

APPENDIX 6

COLLISION RISK MONITORING REPORT

APPENDIX 7-7

Avian Collision Risk Modelling

SEVEN HILLS WIND FARM

Avian Collision Risk Modelling Report

SLR Ref: 501.00501.00005 Version No: 3 May 2022

BASIS OF REPORT

This document has been prepared by SLR with reasonable skill, care and diligence, and taking account of the manpower, timescales and resources devoted to it by agreement with Seven Hills Wind Farm Ltd. (the Client) as part or all of the services it has been appointed by the Client to carry out. It is subject to the terms and conditions of that appointment.

SLR shall not be liable for the use of or reliance on any information, advice, recommendations and opinions in this document for any purpose by any person other than the Client. Reliance may be granted to a third party only in the event that SLR and the third party have executed a reliance agreement or collateral warranty.

Information reported herein may be based on the interpretation of public domain data collected by SLR, and/or information supplied by the Client and/or its other advisors and associates. These data have been accepted in good faith as being accurate and valid.

The copyright and intellectual property in all drawings, reports, specifications, bills of quantities, calculations and other information set out in this report remain vested in SLR unless the terms of appointment state otherwise.

This document may contain information of a specialised and/or highly technical nature and the Client is advised to seek clarification on any elements which may be unclear to it.

Information, advice, recommendations and opinions in this document should only be relied upon in the context of the whole document and any documents referenced explicitly herein and should then only be used within the context of the appointment.

CONTENTS

1.0	INTRODUCTION1
1.1	Primary Target Species1
1.1.1	Non-breeding Season Surveys
1.1.2	Breeding Season Surveys
1.2	Secondary Target Species
2.0	METHODS4
2.1	Prediction of Rotor Transits from Vantage Point Survey Data 4
2.1.1	Correcting Survey PCH to Actual PCH 4
2.1.2	Seasonal Definitions
2.1.3	Undertaking CRM
2.1.4	Bird Biometrics and Avoidance Rates
2.1.5	Wind Farm and Turbine Parameters
2.2	Summary Flightline Data
2.2.1	Wind Farm 1 (North)
2.2.2	Wind Farm 2 (South)
2.3	Species Input Data
2.3.1	Wind Farm 1 (North)
2.3.2	Wind Farm 2 (South)
3.0	COLLISION RISK MODELLING RESULTS
3.1	Wind Farm 1 (North) 25
3.2	Wind Farm 2 (South)
3.3	Wind Farms 1 & 2 Combined 28
3.3.1	Notes on Distribution of Flightlines
l	

DOCUMENT REFERENCES

TABLES

Table 2-1 Modelled species breeding and non-breeding season periods	6
Table 2-2 Bird biometrics and avoidance rates used in CRM	8
Table 2-3 Wind farm & turbine parameters	8
Table 2-4 Number of target species flights and individuals observed passing through the CRZ de	uring non
breeding season VP surveys (2018-2019), WF1	9

Table 2-5 Number of target species flights and individuals observed passing through the CRZ during breeding
season VP surveys (2019), WF110
Table 2-6 Number of target species flights and individuals observed passing through the CRZ during non-breeding season VP surveys (2019-2020), WF110
Table 2-7 Number of target species flights and individuals observed passing through the CRZ during breeding season VP surveys (2020), WF1
Table 2-8 Number of target species flights and individuals observed passing through the CRZ during non-breeding season VP surveys (2020-2021), WF1
Table 2-9 Number of target species flights and individuals observed passing through the CRZ during breeding season VP surveys (2021), WF1
Table 2-10 Number of target species flights and individuals observed passing through the CRZ during non-breeding season VP surveys (2018-2019), WF2
Table 2-11 Number of target species flights and individuals observed passing through the CRZ duringbreeding season VP surveys (2019), WF2
Table 2-12 Number of target species flights and individuals observed passing through the CRZ during non-breeding season VP surveys (2019-2020), WF2
Table 2-13 Number of target species flights and individuals observed passing through the CRZ during breeding season VP surveys (2020), WF2
Table 2-14 Number of target species flights and individuals observed passing through the CRZ during non-breeding season VP surveys (2020-2021), WF2
Table 2-15 Number of target species flights and individuals observed passing through the CRZ during breeding season VP surveys (2021), WF2
Table 2-16 Whooper Swan Input Data, Non-breeding Season 2018-19 WF1
Table 2-17 Whooper Swan Input Data, Non-breeding Season 2020-21 WF1
Table 2-18 Greenland White-fronted Goose Input Data, Non-breeding Season 2018-19 WF1 15
Table 2-19 European Golden Plover Input Data, Non-breeding Season 2018-19 WF1
Table 2-20 European Golden Plover Input Data, Non-breeding Season 2019-20 WF1
Table 2-21 European Golden Plover Input Data, Non-breeding Season 2020-21 WF1
Table 2-22 Northern Lapwing Input Data, Non-breeding Season 2019-20 WF1
Table 2-23 Black-headed Gull Input Data, Breeding Season 2021 WF1
Table 2-24 Whooper Swan Input Data, Non-breeding Season 2018-19 WF2
Table 2-25 Whooper Swan Input Data, Non-breeding Season 2019-20 WF2
Table 2-26 Whooper Swan Input Data, Non-breeding Season 2020-21 WF2
Table 2-27 Eurasian Wigeon Input Data, Non-breeding Season 2018-19 WF2
Table 2-28 Eurasian Wigeon Input Data, Non-breeding Season 2020-21 WF2
Table 2-29 Peregrine Falcon Input Data, Non-breeding Season 2018-19 WF2
Table 2-30 Peregrine Falcon Input Data, Non-breeding Season 2020-21 WF2
Table 2-31 Common Kestrel Input Data, Breeding Season 2021 WF2

Table 2-32 European Golden Plover Input Data, Non-breeding Season 2018-19 WF2	. 20
Table 2-33 European Golden Plover Input Data, Non-breeding Season 2019-20 WF2	. 20
Table 2-34 European Golden Plover Input Data, Non-breeding Season 2020-21 WF2	. 20
Table 2-35 Northern Lapwing Input Data, Non-breeding Season 2018-19 WF2	. 21
Table 2-36 Northern Lapwing Input Data, Non-breeding Season 2019-20 WF2	. 21
Table 2-37 Northern Lapwing Input Data, Breeding Season 2020 WF2	. 22
Table 2-38 Northern Lapwing Input Data, Non-breeding Season 2020-21 WF2	. 22
Table 2-39 Northern Lapwing Input Data, Breeding Season 2021 WF2	. 22
Table 2-40 Eurasian Curlew Input Data, Non-breeding Season 2018-19 WF2	. 23
Table 2-41 Black-headed Gull Input Data, Breeding Season 2020 WF2	. 23
Table 2-42 Black-headed Gull Input Data, Breeding Season 2021 WF2	. 23
Table 3-1 Whooper Swan CRM Output, WF1	. 25
Table 3-2 Greenland White-fronted Goose CRM Output, WF1	. 25
Table 3-3 European Golden Plover CRM Output, WF1	. 25
Table 3-4 Northern Lapwing CRM Output, WF1	. 25
Table 3-5 Black-headed Gull CRM Output, WF1	. 26
Table 3-6 Whooper Swan CRM Output, WF2	. 26
Table 3-7 Eurasian Wigeon CRM Output, WF2	. 26
Table 3-8 Peregrine Falcon CRM Output, WF2	. 26
Table 3-9 Common Kestrel CRM Output, WF2	. 27
Table 3-10 European Golden Plover CRM Output, WF2	. 27
Table 3-11 Northern Lapwing CRM Output, WF2	. 27
Table 3-12 Eurasian Curlew CRM Output, WF2	. 27
Table 3-13 Black-headed Gull CRM Output, WF2	. 28
Table 3-14 Whooper Swan CRM Output, WF1 & WF2 Combined	. 28
Table 3-15 Greenland White-fronted Goose CRM Output, WF1 & WF2 Combined	. 28
Table 3-16 Eurasian Wigeon CRM Output, WF1 & WF2 Combined	. 28
Table 3-17 Peregrine Falcon CRM Output, WF1 & WF2 Combined	. 29
Table 3-18 Common Kestrel, WF1 & WF2 Combined	. 29
Table 3-19 European Golden Plover CRM Output, WF1 & WF2 Combined	. 29
Table 3-20 Northern Lapwing CRM Output, WF1 & WF2 Combined	. 29
Table 3-21 Eurasian Curlew CRM Output, WF1 & WF2 Combined	. 30
Table 3-22 Black-headed Gull CRM Output, WF1 & WF2 Combined	. 30

FIGURES

Figure 1: Vantage Point Locations, Viewsheds and Collision Risk Zones

APPENDICES

Appendix 01: Collision Probability Calculations Appendix 02: Wind Farm 1 (North) CRM Calculations Appendix 03: Wind Farm 2 (South) CRM Calculations

1.0 Introduction

This report presents the results of Collision Risk Modelling (CRM) undertaken for nine bird species to inform the Environmental Impact Assessment (EIA) for the proposed Seven Hills Wind Farm, which comprises two separate turbine clusters (Wind Farm 1 (WF1) (North) and Wind Farm 2 (WF2) (South)). For the purposes of this report, these two clusters are treated individually and in combination.

The exact make, type and model of turbine to be used as part of the proposed wind farm development will be the result of a future tendering process and therefore an indicative 'candidate' turbine model has been assumed for this assessment. Modelling was therefore based on the use of Vestas V162 6MW turbines, each with a rotor diameter of 162m, tip height of 180m and hub height of 99m, which is consistent with the information outlined in the EIA Report (EIAR).

Where there was sufficient bird flight activity within the respective Collision Risk Zones (CRZs) (i.e., within the respective Wind Farm Polygon (WP¹)) at Potential Collision Height (PCH), CRM was used to predict the number of individuals of each primary target species (see Section 1.1) that might collide with the wind turbine rotors.

Sufficient flight activity was defined as a minimum total of five flights or minimum ten individuals of each primary target species recorded in each CRZ during each season of analysis².

The CRM was undertaken in accordance with current NatureScot (NS) (formerly SNH) guidance, which is recognised as standard best practice guidance through the UK and Ireland to inform impact assessment for onshore wind farms. Further details regarding the methodology used, including details of assumptions used and any corrections applied, are provided in Section 2. The monitoring results are presented in Section 3 and copies of the modelling calculations for each species modelled are included in Appendices 01-03.

The results of the CRM, as presented in this report, will be used to inform the EIA for the proposed wind farm. The assessment of significance of potential impacts is beyond the scope of this report and is covered within the EIAR.

1.1 Primary Target Species

The list of primary target species was limited to species upon which effects are most likely to be potentially significant in EIA terms, thereby enabling recording to focus on the species of greatest importance.

NatureScot guidelines state that "*in most circumstances the target species will be limited to those species which are afforded a higher level of legislative protection.*" Common kestrel³, buzzard and sparrowhawk are not subject to a higher level of legislative protection than any other bird species and were therefore not considered as primary target species.

Furthermore, primary target species were specifically limited to species upon which effects are most likely to be potentially significant in EIA terms, e.g., breeding and non-breeding species forming qualifying features for nearby SPAs or species listed on Annex I of the Birds Directive. This enabled recording to focus on the species of greatest importance without the distraction of having to record detailed flight data for a larger number of more common species.

³ Following the publication of the latest Birds of Conservation Concern in Ireland (BoCCI) 4: 2020-2026 (Gilbert *et al.*, 2021) in April 2021, common kestrel has been moved to the Red-list. Common kestrel was therefore subsequently included as a primary target species during the breeding season in 2021.

¹ The Wind Farm Polygon for each cluster includes the area within 500m of the outermost turbine blades in the respective layouts.

² Numbers below these thresholds are likely to result in negligible predicted mortality.

1.1.1 Non-breeding Season Surveys

The primary target species included the following bird species (* excluded in 2019/20):

- Whooper swan *Cygnus cygnus*;
- Greenland white-fronted goose Anser albifrons flavirostris;
- Eurasian wigeon Mareca penelope*;
- Peregrine falcon *Falco peregrinus*;
- Hen harrier Circus cyaneus;
- Merlin Falco columbarius;
- Northern lapwing Vanellus vanellus;
- European golden plover *Pluvialis apricaria;*
- Eurasian curlew *Numenius arquata*;* and
- Short-eared owl Asio flammeus.

1.1.2 Breeding Season Surveys

A precautionary approach was taken to the inclusion of Annex 1 species as primary target species with all Annex 1 raptor/owl species with any realistic potential to be present included as primary target species, although it was recognised that the likelihood of some of these species breeding in the vicinity of the sites was very low. As such, the primary target species for VP surveys during the breeding season included the following bird species (* 2020 and 2021, ** 2021 only):

- Peregrine falcon;
- Hen harrier;
- Merlin;
- Common kestrel Falco tinnunculus**;
- European golden plover;
- Eurasian curlew;
- Black-headed gull Chroicocephalus ridibundus*;
- Herring gull Larus argentatus*; and
- Short-eared owl.

Although northern lapwing, Eurasian curlew, black-headed gull and herring gull are not listed under Annex I of the Birds Directive, they were red-listed in Ireland under the Birds of Conservation Concern 2014-2019⁴ as numbers of breeding pairs within the Irish landscape have suffered a serious decline in recent years. As such, Eurasian curlew was recorded as a primary target species in 2019, 2020 and 2021; and northern lapwing and black-headed gull were also included in 2020 and 2021. Herring gull was included as a primary target species in 2020, but not in 2021 owing to its removal from the BoCC red list in April 2021 (Gilbert *et al.*, 2021)⁵. Black-headed gull was also removed from the BoCC red list in April 2021 but was retained as a primary target species

⁴ Colhoun, K. & Cummins, S. (2013). Birds of Conservation Concern in Ireland 2014–2019. *Irish Birds* 9: 523-544.

⁵ Gilbert, G., Stanbury, A. & Lewis, L. (2021). Birds of Conservation Concern in Ireland 4: (2020-2026). *Irish Birds* 43: 1-22.

due to the presence of a breeding colony at Lough Ree. Common kestrel was added to the red list in April 2021 and was therefore classed as a primary target species for breeding season surveys undertaken in 2021.

1.2 Secondary Target Species

Secondary target species included the following and were not subject to CRM:

- Any other wildfowl and wader species not recorded as primary target species;
- Buzzard Buteo buteo;
- Sparrowhawk Accipiter nisus;
- Common kestrel (other than in 2021 when included as primary target species);
- Raven Corvus corax;
- Grey heron *Ardea cinerea;*
- Cormorant *Phalacrocorax carbo;* and
- Gulls Larus sp. (where not recorded as primary target species).

2.0 Methods

The standard Band CRM (Band *et al.* 2007⁶) was used to estimate collision risk based on recorded target species activity levels and flight behaviour, proposed turbine numbers and specifications, and the relevant species biometrics and flight characteristics. Modelling collision risk under the Band CRM is a two-stage process. Stage 1 estimates the number of birds that fly through the rotor swept disc. Stage 2 predicts the proportion of these birds that have the potential to be hit by a rotor blade. Combining both stages produces an estimate of collision mortality in the absence of any avoidance action/behaviour by birds. Avoidance rates are then applied to generate predicted rates of collision mortality.

2.1 Prediction of Rotor Transits from Vantage Point Survey Data

The number of birds that fly through the rotor swept area was estimated using flight data gathered during baseline surveys carried out during the period September 2018 to September 2021⁷. These surveys gathered data from the two wind farm clusters using vantage points (VPs). Two VPs were used at WF1 and four VPs were used at WF2.

In order to select flights liable to incur a potential risk of collision; i.e. within the areas occupied by proposed turbines, the CRM used only observations collected within the WP – defined by a 500m buffer (generated from the turbine blades) around the proposed outermost turbine locations (see Figure 1). The size of buffer follows NS guidance, in order to take into account rotor blade length and potential spatial errors in flight recording accuracy⁸. It is known that bird detection rates vary between species. To ensure the CRM used robust measures of flight activity, a 2km distance truncation was used in the viewshed (i.e. the area visible) from each VP (as per NS guidance).

Analysis in GIS identified those flights that were at PCH and over the WP. Flight times that were used in the CRM were derived from field data for each flight. Where only part of the relevant flight line occurred within the WP, the flight time was calculated based on the proportion of the flight recorded within the WP, assuming a constant speed for each flight. Time spent at different flight heights was estimated in a database from interval data for flights that entered the WP. Flying time estimated to occur within the survey recording height bands (see Section 2.1.1) was used to determine the period that target species were at risk of collision with the rotors.

2.1.1 Correcting Survey PCH to Actual PCH

Baseline VP surveys were initiated before candidate turbine details were known. The baseline surveys utilised the following height bands, which evolved over time as likely turbine details became better understood:

Winter 2018/19

- Height Band 1: 0-30m;
- Height Band 2: 30-150m; and

⁸ Note that the inclusion of all flights within 500m is a necessarily precautionary approach, primarily to allow for mapping inaccuracies. However, at Seven Hills many of the flights within the 500m buffer occurred close to VPs and are therefore known to be mapped accurately. The inclusion of these flights could therefore result in collision risk being overestimated in some cases, e.g. by the inclusion of flights around Feacle Turlough near WF2 VP3, most of which did enter the rotor swept area.

 ⁶ Band, W., Madders, M. and Whitfield, D.P. (2007) Developing Field and Analytical Methods to Assess Avian Collision Risk at Wind Farms. In: De Lucas, M., Janss, G. and Ferrer, M., Eds., *Birds and Wind Power*, Quercus Editions, Madrid, 259-275.
 ⁷ SLR Consulting. (2021). Seven Hills Wind Farm Phase I and II Bird Survey Reports (x6): Winter 2018/19; Breeding Season 2019; Winter 2019/20; Breeding Season 2020; Winter 2020/21; and Breeding Season 2021.

• Height Band 3: >150m.

Summer 2019

- Height Band 1: 0-30m;
- Height Band 2: 30-150m; and
- Height Band 3: >150m.

Winter 2019/20

- Height Band 1: 0-25m;
- Height Band 2: 25-50m;
- Height Band 3: 50-150m; and
- Height Band 4: >150m.

Summer 2020

- Height Band 1: 0-25m;
- Height Band 2: 25-50m;
- Height Band 3: 50-150m; and
- Height Band 4: >150m.

Winter 2020/21

October only:

- Height Band 1: 0-25m;
- Height Band 2: 25-50m;
- Height Band 3: 50-150m; and
- Height Band 4: >150m.

November – March:

- Height Band 1: 0-15m;
- Height Band 2: 15-30m;
- Height Band 3: 30-150m;
- Height Band 4: 150-200m; and
- Height Band 5: >200m.

Summer 2021

- Height Band 1: 0-15m;
- Height Band 2: 15-30m;
- Height Band 3: 30-150m;
- Height Band 4: 150-200m; and
- Height Band 5: >200m.

As such, the height bands used to record flight activity do not correspond precisely to PCH for the proposed development (18-180m), i.e.:

- Height band 1 overlaps with the lower limit of the actual PCH where it is 0-30m and 0-25m (i.e. prior to November 2020); and
- The 150-180m zone is included within the >150m height bands in all seasons other than during November 2020 September 2021. Height band 5 in this last period (>200m) is above the tip height of 180m and flights in this height band can therefore be assumed to be above risk height; whereas height band 4 (150-200m) overlaps with the upper limit of the actual PCH.

Because of this it was necessary to make assumptions about the distribution of some of the flight heights recorded. With regard to height band 1, assuming an equal distribution of heights within it, it is clear that a proportion of flights will be below risk height. Therefore, as theoretically only a proportion of flights from 0-30m or 0-25m are at risk, the proportion of flights included within the CRM in height band 1 was assumed to be either 12/30 (where height band 1 was 0-30m) or 7/25 (where height band 1 was 0-25m). With regard to surveys during November 2020 – September 2021 the proportion of flights in height band 2 (15-30m) used was 12/15.

With regard to flights in the >150m height band, these cannot logically be proportioned so a precautionary approach was adopted whereby all flights in this height band were included within the CRM (unless the surveyor noted the estimated height was >180m).

There were no flights in the revised height bands 4 or 5 during the period November 2020-September 2021 therefore no adjustments were necessary.

2.1.2 Seasonal Definitions

For each species modelled, CRMs were constructed using data from the relevant breeding and non-breeding season periods, as defined by NS in relation to Scotland but also broadly applicable to Ireland⁹ (Table 2-1).

Species name	Breeding season start	Breeding season end	Non-breeding season start	Non-breeding season end					
Whooper swan	01-Apr	15-Aug	16-Aug	31-Mar					
Greenland white- fronted goose	01-Apr	15-Aug	16-Aug	31-Mar					
Eurasian wigeon	15-Apr	31-Aug	01-Sep	14-Apr					
Peregrine falcon	01-Mar	31-Jul	01-Aug	28-Feb					
Common kestrel	01-Mar	15-Aug	16-Aug	28-Feb					
European golden plover	01-Apr	15-Aug	16-Aug	31-Mar					
Northern lapwing	01-Mar	31-Jul	01-Aug	28-Feb					
Eurasian curlew	01-Apr	31-Jul	01-Aug	31-Mar					
Black-headed gull	01-Apr	31-Aug	01-Sep	31-Mar					

Table 2-1 Modelled species breeding and non-breeding season periods

⁹ Breeding season dates sourced from NatureScot (<u>https://www.nature.scot/bird-breeding-season-dates-scotland</u>) [Accessed in Dec 2021].

The theoretical time that birds could be active with potential for turbine collisions was assumed to be the period between dawn and dusk within each survey period (determined from civil twilight data for the Site¹⁰), to account for species which are potentially active during the periods just before sunrise and just after sunset.

2.1.3 Undertaking CRM

The following parameters were entered into a bespoke modelling spreadsheet:

- The total observation effort within the risk volume (V_w) visible from each VP;
- The occupancy total: the total time spent by a particular species flying within the risk volume (V_w) visible from each VP;
- The volume of Vw (m³) visible from each VP (this is area covered by the outermost turbines without the 500m buffer);
- A calculation of daylight minutes within the season of analysis;
- Species-specific bird parameters (Section 2.1.4); and
- Wind farm parameters (Section 2.1.5).

VP locations, viewsheds (the area visible from each VP at the lowest rotor swept height (18m)) and the 500m buffer around the outermost turbine blades are shown in Figure 1.

The NatureScot CRM spreadsheet¹¹ calculates the probability of collision for each particular species. The model then combines this probability of collision with the observed flight activity per unit area (hours per hectare) weighted for observation effort from each VP to produce an estimate of the number of transits through the rotor blades. Mortality estimates are then derived by applying species-specific avoidance rates (Section 2.1.4).

2.1.4 Bird Biometrics and Avoidance Rates

Measurements and flight speeds for the species for which CRM was undertaken were derived from British Trust for Ornithology (BTO)¹², SNH (2014¹³), Provan & Whitfield (2006¹⁴), Bruderer & Boldt (2001¹⁵) and McDuie *et al.* (2019)¹⁶. These are detailed in Table 2-2 below, along with the avoidance rate for these species per current NS guidance (SNH 2018¹⁷).

model#:~:text=2.%20Recommended%20avoidance%20rates%20%20Species%20,%20SNH%20%282013%29%20%207
%20more%20rows%20

¹⁰ <u>https://www.timeanddate.com</u> [Accessed in December 2021].

¹¹<u>https://www.nature.scot/wind-farm-impacts-birds-calculating-probability-collision</u>[Accessed in December 2021].

¹² <u>https://www.bto.org/understanding-birds/birdfacts</u> [Accessed in December 2021].

¹³ SNH (2014) Flight speeds and biometrics for collision risk modelling. Scottish Natural Heritage, Inverness.

¹⁴ Provan, S. and Whitfield, D.P. (2006) Avian flight speeds and biometrics for use in collision risk modelling. Unpublished report to Scottish Natural Heritage.

¹⁵ Bruderer, B. and Bolt, A. (2001) Flight characteristics of birds: 1. Radar measurements of speeds, *Ibis*, **143**. 178 – 204.

¹⁶ McDuie, F; Casazza, M.L.; Keiter, D; Overton, C.T.; Herzog, M.P.; Feldheim, C.L. and Ackerman, J.T. (2019). Moving at the speed of flight: dabbling duck-movement rates and the relationship with electronic tracking interval. *Wildlife Research*, **46**, 533-543.

¹⁷ SNH (2018) Avoidance rates for the onshore SNH wind farm collision risk model. <u>https://www.nature.scot/doc/wind-farm-impacts-birds-use-avoidance-rates-naturescot-wind-farm-collision-risk-</u>

Species name	Bird length (m)	Wingspan (m)	Flight speed (m/s)	Avoidance rate (%)
Whooper swan	1.52	2.3	17.3	99.5
Greenland white-fronted goose	0.72	1.48	16.1	99.8
Eurasian wigeon	0.48	0.8	10.3	98
Peregrine falcon	0.45	1.1	14.0	98
Common kestrel	0.34	0.8	12.7	95
European golden plover	0.28	0.72	17.5	98
Northern lapwing	0.30	0.84	12.3	98
Eurasian curlew	0.55	0.9	13.2	98
Black-headed gull	0.36	1.05	11.2	98

Table 2-2Bird biometrics and avoidance rates used in CRM

2.1.5 Wind Farm and Turbine Parameters

The north and south wind farm layouts (shown on Figure 1) and wind turbine parameters used in the CRM are detailed in Table 2-3 and are based on the use of Vestas V162 turbines, which are considered likely to represent a reasonable worst-case (in terms of representing the turbine with the longest blade length of the various turbines under consideration).

Table 2-3Wind farm & turbine parameters

Parameter	Value				
Size of wind farm polygons (WP) (ha)	Wind Farm 1 (North): 455.3ha				
	Wind Farm 2 (South): 1036.6ha				
Wind farm areas (ha) visible within viewshed (v)	Wind Farm 1 (North): 449.6ha				
	Wind Farm 2 (South): 914.6ha				
Number of turbines	Wind Farm 1 (North): 7				
	Wind Farm 2 (South): 13				
Rotor diameter	162m				
Hub height	99m				
Max. chord	4.3m				
Pitch	Variable – 0° for modelling purposes				
Rotation period	4.96s (max 12.1rpm)				
Turbine operation time	95% (estimated by the Client) upper limit considering down-time for maintenance, weather conditions etc.				

2.2 Summary Flightline Data

The following sections summarise the available primary target species flightline data from VP surveys conducted at Seven Hills WF1 (north) and WF2 (south), presented for each season (Table 2-4 to Table 2-15). Note that there are some small discrepancies between the total survey hours presented in the baseline survey reports and the survey hours used for CRM in this report. There are two reasons for this:

- Breeding and non-breeding seasons vary according to species (Table 2-1), therefore the amount of survey effort per season used for CRM does not always correspond with the figures provided in the baseline reports (for example the non-breeding season for wigeon (Table 2-1) begins on 1st September and ends on 14th April whereas the non-breeding season surveys reported in the relevant baseline reports cover the period October to March inclusive); and
- 2. A small amount of data reported in the baseline reports were unavailable for use in the CRM, due to IT issues. Only flights where the attribute data were available have been used in the CRM, although given the relatively small amount of data affected¹⁸ this is not considered to have significantly affected the outcome of the assessment. It should also be noted that baseline data has been used from three breeding seasons and three non-breeding seasons, which exceeds the requirements of current NS guidance¹⁹.

2.2.1 Wind Farm 1 (North)

Table 2-4Number of target species flights and individuals observed passing through the CRZ during non-breeding
season VP surveys (2018-2019), WF1

Species name	Total number of birds recorded in flight	Flights through WP		CRM carried out	Flights thro PCH ²⁰	ough WP at
		Flights	Individuals		Flights	Individuals
Whooper swan	21	2	21	Yes	2	21
Greenland white-fronted goose	19	2	19	Yes	2	19
European golden plover	92	1	40	Yes	1	40

²⁰ For the purposes of Tables 2-4 to 2-14 PCH refers to all height bands which include the area at PCH, whether in full or in part.

 $^{^{18}}$ The amount of affected data over the two breeding seasons and three non-breeding seasons (where data were affected) is as follows. Northern cluster: VP 1 = 3.2% and VP 2 = 4.8%. Southern cluster: VPs 1 and 2 = 4.8% (each) and VPs 3 and 4 = 13% (each).

¹⁹ Scottish Natural Heritage (2017) Recommended bird survey methods to inform impact assessment of onshore wind farms. Version 2. SNH Guidance.

Number of target species flights and individuals observed passing through the CRZ during breeding season VP surveys (2019), WF1

Species nam	ne	Total number of bin recorded in flight	rds	Flights throu	ıgh WP	CRM carried out	Flights throu	igh WP at PCH
				Flights	Individuals		Flights	Individuals
Peregrine fa	lcon	1		1	1	No	1	1

Table 2-6

Number of target species flights and individuals observed passing through the CRZ during non-breeding season VP surveys (2019-2020), WF1

Species name	Total number of birds recorded in flight	Flights throu	ugh WP	CRM carried out	Flights throu	igh WP at PCH
		Flights	Individuals		Flights	Individuals
Whooper swan	16	0	0	No	0	0
Greenland white-fronted goose	72	0	0	No	0	0
European golden plover	140	3	92	Yes	3	92
Northern lapwing	25	2	25	Yes	1	10

Table 2-7

Number of target species flights and individuals observed passing through the CRZ during breeding season VP surveys (2020), WF1

Species name	Total number of birds recorded in flight	Flights through WP		CRM carried out	Flights throu	igh WP at PCH
		Flights	Individuals		Flights	Individuals
Hen harrier	1	1	1	No	1	1
Black-headed gull	41	2	7	No	2	7
Herring gull	19	0	0	No	0	0

Number of target species flights and individuals observed passing through the CRZ during non-breeding season VP surveys (2020-2021), WF1

Species name	Total number of birds recorded in flight	Flights through WP		CRM carried out	Flights throu	igh WP at PCH
		Flights	Individuals		Flights	Individuals
Whooper swan	58	2	13	Yes	2	13
Eurasian wigeon	35	0	0	No	0	0
Peregrine falcon	1	0	0	No	0	0
European golden plover	107	1	17	Yes	1	17
Northern Iapwing	60	0	0	No	0	0

Table 2-9

Number of target species flights and individuals observed passing through the CRZ during breeding season VP surveys (2021), WF1

Species name	Total number of birds recorded in flight	Flights through WP		CRM carried out	Flights throu	Flights through WP at PCH	
		Flights	Individuals		Flights	Individuals	
Common kestrel	3	0	0	No	0	0	
Peregrine falcon	1	1	1	No	1	1	
Eurasian curlew	4	0	0	No	0	0	
Black-headed gull	51	8	27	Yes	8	27	

2.2.2 Wind Farm 2 (South)

Table 2-10Number of target species flights and individuals observed passing through the CRZ during non-breeding
season VP surveys (2018-2019), WF2

Species name	Total number of birds recorded in flight	Flights through WP		CRM carried out	Flights throu	igh WP at PCH
		Flights	Individuals		Flights	Individuals
Whooper swan	33	5	30	Yes	5	30

Species name	Total number of birds recorded in flight	Flights through WP		CRM carried out	Flights throu	igh WP at PCH
		Flights	Individuals		Flights	Individuals
Eurasian wigeon	37	2	37	Yes	2	37
Peregrine falcon	5	4	4	Yes	4	4
European golden plover	11	2	11	Yes	2	11
Northern lapwing	126	8	101	Yes	6	98
Eurasian curlew	212	14	212	Yes	14	212

Number of target species flights and individuals observed passing through the CRZ during breeding season VP surveys (2019), WF2

Species name	Total number of birds recorded in flight	Flights through WP		CRM carried out	Flights throu	igh WP at PCH
		Flights	Individuals		Flights	Individuals
Peregrine falcon	1	1	1	No	1	1
Eurasian curlew	4	1	4	No	1	4

Table 2-12

Number of target species flights and individuals observed passing through the CRZ during non-breeding season VP surveys (2019-2020), WF2

Species name	Total number of birds recorded in flight	Flights through WP		CRM carried out	Flights throu	igh WP at PCH
		Flights	Individuals		Flights	Individuals
Whooper swan	31	5	31	Yes	5	31
European golden plover	36	3	36	Yes	3	36
Northern lapwing	69	6	69	Yes	6	69

Number of target species flights and individuals observed passing through the CRZ during breeding season VP surveys (2020), WF2

Species name	Total number of birds recorded in flight	Flights through WP		CRM carried out	Flights throu	igh WP at PCH
		Flights	Individuals		Flights	Individuals
Northern lapwing	23	1	23	Yes	1	23
Black-headed gull	44	16	36	Yes	16	36
Herring gull	5	4	4	No	4	4

Table 2-14

Number of target species flights and individuals observed passing through the CRZ during non-breeding season VP surveys (2020-2021), WF2

Species name	Total number of birds recorded in flight			CRM carried out	Flights throu	igh WP at PCH
		Flights	Individuals		Flights	Individuals
Whooper swan	35	8	35	Yes	8	35
Greenland white-fronted goose	50	0	0	No	0	0
Eurasian wigeon	291	7	291	Yes	3	158
Peregrine falcon	2	2	2	Yes ²¹	2	2
European golden plover	122	5	122	Yes	5	122
Northern lapwing	313	8	313	Yes	8	313

²¹ Two flights is below normal threshold for CRM but modelling was carried out in this instance in order to calculate the mean collision risk for peregrine falcon for all years.

Number of target species flights and individuals observed passing through the CRZ during breeding season VP surveys (2021), WF2

Species name	Total number of birds recorded in flight	Flights through WP		CRM carried out	Flights through WP at PCH	
		Flights	Individuals		Flights	Individuals
Common kestrel	9	9	9	Yes	9	9
Peregrine falcon	2	2	2	No	2	2
Northern Iapwing	45	4	45	Yes	4	45
Eurasian curlew	3	2	3	No	2	3
Black-headed gull	97	40	64	Yes	40	64

2.3 Species Input Data

2.3.1 Wind Farm 1 (North)

Species input data are detailed in Table 2-16 to Table 2-23 inclusive.

Table 2-16

Whooper Swan Input Data, Non-breeding Season 2018-19 WF1

VP/ Viewshed		Non-breeding	Non-breeding season 2018-19			
VP ID			Bird flight occ	Bird flight occupancy data		
	visible from VP (ha)	effort (hrs)	Total (s)	Risk height (s)		
1	330.5	36	270 270			
2	174.6	33	565	452		
	Non-breeding season = 01 October ²² – 31 March (182 days) Daylight minutes = 116,909			ctober ²² – 31 March (182 days)		

Table 2-17Whooper Swan Input Data, Non-breeding Season 2020-21 WF1

VP/ Viewshed Non-breeding		g season 2020-2	21	
VP ID	Area of CRZ		Bird flight occ	upancy data
	visible from VP (ha)	effort (hrs)	Total (s)	Risk height (s)

²² Surveys only started in October 2018 so 1st October is taken to be the start of the non-breeding season for this year.

VP/ Viewshed		Non-breeding season 2020-21				
1	330.5	36	0	0		
2	174.6	36	912	415		
Non-breeding season = 16 August – 31 March (228 days) Daylight minutes = 156,692			ugust – 31 March (228 days)			

Greenland White-fronted Goose Input Data, Non-breeding Season 2018-19 WF1

VP/ Viewshed		Non-breeding	Non-breeding season 2018-19			
VP ID		Survey	Bird flight occ	Bird flight occupancy data		
	visible from VP (ha)	effort (hrs)	Total (s)	Risk height (s)		
1	330.5	36	959	959		
2	174.6	33	0	0		
		Non-breeding season = 01 October – 31 March (182 days) Daylight minutes = 116,909				

Table 2-19European Golden Plover Input Data, Non-breeding Season 2018-19 WF1

VP/ Viewshed		Non-breeding season 2018-19			
	Area of CRZ	Survey effort (hrs)	Bird flight occupancy data		
	visible from VP (ha)		Total (s)	Risk height (s)	
1	330.5	36	0	0	
2	174.6	33	235	235	
		Non-breeding season = 01 October – 31 March (182 days) Daylight minutes = 116,909			

Table 2-20European Golden Plover Input Data, Non-breeding Season 2019-20 WF1

VP/ Viewshed		Non-breeding season 2019-20			
	Area of CRZ	Survey effort (hrs)	Bird flight occupancy data		
	visible from VP (ha)		Total (s)	Risk height (s)	
1	330.5	48	0	0	
2	174.6	48	1859	1736	
		Non-breeding	g season = 01 Au	ugust – 31 March (244 days)	

VP/ Viewshed	Non-breeding season 2019-20
	Daylight minutes = 172,630

Table 2-21European Golden Plover Input Data, Non-breeding Season 2020-21 WF1

VP/ Viewshed		Non-breeding season 2019-20			
VP ID		· ·	Bird flight occupancy data		
	visible from VP (ha)		Total (s)	Risk height (s)	
1	330.5	48	849	849	
2	174.6	48	0	0	
		Non-breeding season = 01 August – 31 March (243 days) Daylight minutes = 171,618			

Table 2-22Northern Lapwing Input Data, Non-breeding Season 2019-20 WF1

VP/ Viewshed		Non-breeding season 2019-20			
VP ID Area of CRZ visible from VP (ha)		Survey	Bird flight occupancy data		
	effort (hrs)	Total (s)	Risk height (s)		
1	330.5	48	450	450	
2	174.6	48	0	0	
		Non-breeding season = 01 August – 29 February (213 days) Daylight minutes = 148,282			

Table 2-23Black-headed Gull Input Data, Breeding Season 2021 WF1

VP/ Viewshed		Breeding season 2021			
VP ID Area of CRZ visible from VP (ha)		Survey	Bird flight occupancy data		
	effort (hrs)	Total (s)	Risk height (s)		
1	330.5	30	4080	1834	
2	174.6	30	0	0	
		Breeding season = 01 April – 31 August (153 days) Daylight minutes = 156,993			

2.3.2 Wind Farm 2 (South)

Species input data are detailed in Table 2-24 to Table 2-42 inclusive.

Table 2-24
Whooper Swan Input Data, Non-breeding Season 2018-19 WF2

VP/ Viewshed		Non-breeding season 2018-19				
VP ID	Area of CRZ	Survey	Bird flight occ	Bird flight occupancy data		
	visible from VP (ha)	effort (hrs)	Total (s)	Risk height (s)		
1	489.4	36	0	0		
2	371.1	36	135	114		
3	415.0	27	624	430		
4	154.2	33	0	0		
		-	Non-breeding season = 01 October – 31 March (182 days) Daylight minutes = 116,909			

Table 2-25Whooper Swan Input Data, Non-breeding Season 2019-20 WF2

VP/ Viewshed		Non-breeding season 2019-20			
VP ID	Area of CRZ	Survey	Bird flight occ	Bird flight occupancy data	
	visible from VP eff (ha)	effort (hrs)	Total (s)	Risk height (s)	
1	489.4	39	240	67	
2	371.1	39	990	990	
3	415.0	42	795	223	
4	154.2	39	207	207	
		Non-breeding season = 16 August – 31 March (229 days) Daylight minutes = 158,602			

Table 2-26Whooper Swan Input Data, Non-breeding Season 2020-21 WF2

VP/ Viewshed		Non-breeding season 2020-21			
VP ID Area of CRZ	Survey	Bird flight occupancy data			
	visible from VP e (ha)	effort (hrs)	Total (s)	Risk height (s)	
1	489.4	36	0	0	
2	371.1	36	357	357	

VP/ Viewshed		Non-breeding season 2020-21				
3	415.0	36	1696	1428		
4	154.2	36	0	0		
Non-breeding season = 16 August – 31 March (228 days) Daylight minutes = 156,692				ugust – 31 March (228 days)		

Table 2-27Eurasian Wigeon Input Data, Non-breeding Season 2018-19 WF2

VP/ Viewshed		Non-breeding season 2018-19			
VP ID	Area of CRZ	Survey	Bird flight occ	Bird flight occupancy data	
	visible from VP (ha)	effort (hrs)	Total (s)	Risk height (s)	
1	489.4	36	0	0	
2	371.1	36	0	0	
3	415.0	27	1770	1041	
4	154.2	33	0	0	
		Non-breeding season = 01 October – 14 April (196 days) Daylight minutes = 129,231			

Table 2-28

Eurasian Wigeon Input Data, Non-breeding Season 2020-21 WF2

VP/ Viewshed		Non-breeding season 2020-21			
VP ID Area of CRZ visible from VP (ha)		'	Bird flight occupancy data		
	effort (hrs)	Total (s)	Risk height (s)		
1	489.4	42	0	0	
2	371.1	42	0	0	
3	415.0	42	20805	13296	
4	154.2	42	0	0	
		Non-breeding season = 01 September – 31 March ²³ (212 days) Daylight minutes = 141,821			

²³ Survey data period ended on 31 March in 2021.

VP/ Views	hed	Non-breedin	Non-breeding season 2018-19				
VP ID	Area of CRZ	Survey	Bird flight occ	Bird flight occupancy data			
	visible from VP eff (ha)	effort (hrs)	Total (s)	Risk height (s)			
1	489.4	30	70	70			
2	371.1	33	24	15			
3	415.0	21	15	6			
4	154.2	30	0	0			
		Non-breeding season = 01 October – 28 February (151 days) Daylight minutes = 92,661					

Table 2-29Peregrine Falcon Input Data, Non-breeding Season 2018-19 WF2

Table 2-30Peregrine Falcon Input Data, Non-breeding Season 2020-21 WF2

VP/ Viewshed		Non-breeding season 2020-21			
VP ID	Area of CRZ	Survey	Bird flight occ	Bird flight occupancy data	
	visible from VP (ha)	effort (hrs)	Total (s)	Risk height (s)	
1	489.4	42	165	165	
2	371.1	42	0	0	
3	415.0	39	0	0	
4	154.2	36	23	23	
		Non-breeding season = 01 August – 28 February (212 days) Daylight minutes = 147,318			

Table 2-31Common Kestrel Input Data, Breeding Season 2021 WF2

VP/ Viewshed		Breeding season 2021			
VP ID	Area of CRZ	Survey	Bird flight occupancy data		
	visible from VP (ha)	effort (hrs)	Total (s)	Risk height (s)	
1	489.4	36	780	780	
2	371.1	33	345	334	
3	415.0	30	0	0	
4	154.2	30	43	18	
		Breeding seas	son = 01 March	– 15 August (168 days)	

VP/ Viewshed	Breeding season 2021
	Daylight minutes = 166,422

Table 2-32
European Golden Plover Input Data, Non-breeding Season 2018-19 WF2

VP/ Viewshed		Non-breeding season 2018-19			
VP ID			Bird flight occ	Bird flight occupancy data	
	visible from VP effort (h (ha)	effort (hrs)	Total (s)	Risk height (s)	
1	489.4	33	0	0	
2	371.1	36	270	108	
3	415.0	36	0	0	
4	154.2	36	0	0	
		Non-breeding season = 01 October – 31 March (182 days) Daylight minutes = 116,909			

Table 2-33European Golden Plover Input Data, Non-breeding Season 2019-20 WF2

VP/ Viewshed		Non-breeding season 2019-20			
VP ID	Area of CRZ	Survey	Bird flight occ	Bird flight occupancy data	
	visible from VP (ha)	effort (hrs)	Total (s)	Risk height (s)	
1	489.4	45	0	0	
2	371.1	45	1575	441	
3	415.0	48	1577	1553	
4	154.2	45	0	0	
		Non-breeding season = 01 August – 31 March (244 days) Daylight minutes = 172,630			

Table 2-34 European Golden Plover Input Data, Non-breeding Season 2020-21 WF2

VP/ Viewshed Non-breeding		Non-breeding	g season 2020-21
VP ID			Bird flight occupancy data

VP/ Viewshed		Non-breeding season 2020-21			
	Area of CRZ visible from VP (ha)	Survey effort (hrs)	Total (s)	Risk height (s)	
1	489.4	48	0	0	
2	371.1	48	0	0	
3	415.0	45	15129	13895	
4	154.2	42	10	8	
		Non-breeding season = 01 August – 31 March (243 days) Daylight minutes = 171,618			

Table 2-35Northern Lapwing Input Data, Non-breeding Season 2018-19 WF2

VP/ Viewshed		Non-breeding season 2018-19			
VP ID			Bird flight occ	Bird flight occupancy data	
	visible from VP (ha)	effort (hrs)	Total (s)	Risk height (s)	
1	489.4	30	1588	1588	
2	371.1	33	447	339	
3	415.0	21	3147	1826	
4	154.2	30	0	0	
		Non-breeding season = 01 October – 28 February (181 days) Daylight minutes = 92,661			

Table 2-36Northern Lapwing Input Data, Non-breeding Season 2019-20 WF2

VP/ Viewshed		Non-breeding season 2019-20			
VP ID	Area of CRZ	Survey	Bird flight occ	Bird flight occupancy data	
	visible from VP effe (ha)	effort (hrs)	Total (s)	Risk height (s)	
1	489.4	39	0	0	
2	371.1	45	0	0	
3	415.0	48	5115	4118	
4	154.2	45	0	0	
		Non-breeding season = 01 August – 29 February (213 days) Daylight minutes = 148,282			

Table 2-37				
Northern Lapwing Input Data, Breeding Season 2020 WF2				

VP/ Viewshed Breeding season 2020		son 2020		
VP ID	Area of CRZ	Survey	Bird flight occ	upancy data
	visible from VP (ha)	effort (hrs)	Total (s)	Risk height (s)
1	489.4	30	0	0
2	371.1	30	0	0
3	415.0	24	690	442
4	154.2	27 0 0		0
		-	son = 01 March ites = 151,538	– 31 July (153 days)

Table 2-38Northern Lapwing Input Data, Non-breeding Season 2020-21 WF2

VP/ Viewshed	P/ Viewshed Non-breeding season 2020-2		g season 2020-2	21	
VP ID	Area of CRZ	Survey	Bird flight occ	upancy data	
	visible from VP (ha)	effort (hrs)	Total (s)	Risk height (s)	
1	489.4	30	0	0	
2	371.1	30	0	0	
3	415.0	24	28050	24240	
4	154.2	27	75 60		
		-	Non-breeding season = 01 August – 28 February (212 days) Daylight minutes = 147,3158		

Table 2-39Northern Lapwing Input Data, Breeding Season 2021 WF2

VP/ Viewshed Breeding		Breeding sea	ason 2021		
VP ID	Area of CRZ	Survey	Bird flight occ	upancy data	
	visible from VP (ha)	effort (hrs)	Total (s)	Risk height (s)	
1	489.4	30	0	0	
2	371.1	30	0	0	
3	415.0	30	9855	7596	
4	154.2	30	0	0	
		Breeding seas	son = 01 March	– 31 July (153 days)	

VP/ Viewshed	Breeding season 2021
	Daylight minutes = 151,456

Table 2-40Eurasian Curlew Input Data, Non-breeding Season 2018-19 WF2

VP/ Viewshec	VP/ Viewshed Non-breeding season 2		g season 2018-1	19
VP ID	Area of CRZ	Survey	Bird flight occ	upancy data
	visible from VP (ha)	effort (hrs)	Total (s)	Risk height (s)
1	489.4	36	0	0
2	371.1	36	0	0
3	415.0	27	9331	5656
4	154.2	33	405 405	
		Non-breeding season = 01 October – 31 Mar (182 days) Daylight minutes = 116,909		

Table 2-41Black-headed Gull Input Data, Breeding Season 2020 WF2

VP/ Viewshed Breeding season 2020		son 2020		
VP ID	Area of CRZ	Survey	Bird flight occ	upancy data
	visible from VP (ha)	effort (hrs)	Total (s)	Risk height (s)
1	489.4	30	0	0
2	371.1	30	90	25
3	415.0	24	1095	544
4	154.2	27	8	8
		Ű,	son = 01 April — ites = 157,005	31 August (153 days)

Table 2-42Black-headed Gull Input Data, Breeding Season 2021 WF2

VP/ Viewshed	VP/ Viewshed Breeding season 2		son 2021	
VP ID	Area of CRZ Survey	Bird flight occupancy data		
	visible from VP (ha)	effort (hrs)	Total (s)	Risk height (s)
1	489.4	30	30	8

VP/ Viewshec	Viewshed Breeding season 2021		son 2021	
2	371.1	30	0	0
3	415.0	30	1696	1215
4	154.2	30	194	159
			son = 01 April — ites = 156,993	31 August (153 days)

3.0 Collision Risk Modelling Results

3.1 Wind Farm 1 (North)

Results of modelling for each season, where sufficient data are available, are summarised in Table 3-1 to Table 3-5 inclusive. The mean figure (where CRM was conducted for more than one season) is calculated by combining the occupancy data along with the survey effort data for all years where flight data were used in the model, using the mean number of potentially active minutes for all years and running the model again.

Table 3-1 Whooper Swan CRM Output, WF1

Season	Modelled Collisions per Year	Years per Collision
Non-breeding season 2018-19	0.156	6.4
Non-breeding season 2020-21	0.118	8.5
Non-breeding season mean	0.095	10.5

Table 3-2Greenland White-fronted Goose CRM Output, WF1

Season	Modelled Collisions per Year	Years per Collision
Non-breeding season 2018-19	0.054	18.5

Table 3-3European Golden Plover CRM Output, WF1

Season	Modelled Collisions per Year	Years per Collision
Non-breeding season 2018-19	0.101	9.9
Non-breeding season 2019-20	0.798	1.3
Non-breeding season 2020-21	0.444	2.3
Non-breeding season mean	0.432	2.3

Table 3-4 Northern Lapwing CRM Output, WF1

Season	Modelled Collisions per Year	Years per Collision
Non-breeding season 2019-20	0.160	6.3

Table 3-5 Black-headed Gull CRM Output, WF1

Season	Modelled Collisions per Year	Years per Collision
Breeding season 2021	0.969	1.0

3.2 Wind Farm 2 (South)

Results of modelling for each season, where sufficient data are available, are summarised in Table 3-6 to Table 3-13 inclusive. As For WF1 (Section 3.1) the mean figure (where CRM was conducted for more than one season) is calculated by combining the occupancy data along with the survey effort data for all years where flight data were used in the model, using the mean number of potentially active minutes for all years and running the model again.

Table 3-6Whooper Swan CRM Output, WF2

Season	Modelled Collisions per Year	Years per Collision
Non-breeding season 2018-19	0.052	19.2
Non-breeding season 2019-20	0.161	6.2
Non-breeding season 2020-21	0.211	4.7
Non-breeding season mean	0.133	7.5

Table 3-7Eurasian Wigeon CRM Output, WF2

Season	Modelled Collisions per Year	Years/ months per Collision
Non-breeding season 2018-19	0.182	5.5 years
Non-breeding season 2020-21	2.013	6 months
Non-breeding season mean	0.794	1.3 years

Table 3-8Peregrine Falcon CRM Output, WF2

Season	Modelled Collisions per Year	Years per Collision
Non-breeding season 2018-19	0.016	62.5
Non-breeding season 2020-21	0.036	27.8
Non-breeding season mean	0.017	58.8

Table 3-9Common Kestrel CRM Output, WF2

Season	Modelled Collisions per Year	Years per Collision
Breeding season 2021	0.637	1.6

Table 3-10European Golden Plover CRM Output, WF2

Season	Modelled Collisions per Year	Years/ months per Collision	
Non-breeding season 2018-19	0.021	47.6 years	
Non-breeding season 2019-20	0.528	1.9 years	
Non-breeding season 2020-21	2.756	4-5 months	
Non-breeding season mean	0.847	1.2 years	

Table 3-11Northern Lapwing CRM Output, WF2

Season	Modelled Collisions per Year	Years/ months per Collision	
Non-breeding season 2018-19	0.520	1.9 years	
Non-breeding season 2019-20	0.587	1.7 years	
Non-breeding season 2020-21	3.726	3-4 months	
Non-breeding season mean	1.509	7-8 months	
Breeding season 2020	0.101	9.9 years	
Breeding season 2021	1.512	8 months	
Breeding season mean	0.855	1.2 years	

Table 3-12Eurasian Curlew CRM Output, WF2

Season	Modelled Collisions per Year	Months per Collision
Non-breeding season 2018-19	1.171	10

Table 3-13		
Black-headed Gull CRM Output, WF2		

Season	Modelled Collisions per Year	Years per Collision
Breeding season 2020	0.138	7.2
Breeding season 2021	0.287	3.5
Breeding season mean	0.217	4.6

3.3 Wind Farms 1 & 2 Combined

The CRM outputs for WF1 and WF2 combined are summarised in Table 3-14 to Table 3-22.

Table 3-14 Whooper Swan CRM Output, WF1 & WF2 Combined

Season	Modelled Collisions per Year	Years per Collision
Non-breeding season 2018-19	0.208	4.8
Non-breeding season 2019-20	0.161	6.2
Non-breeding season 2020-21	0.329	3.0
Non-breeding season mean	0.228	4.4

Table 3-15 Greenland White-fronted Goose CRM Output, WF1 & WF2 Combined

Season	Modelled Collisions per Year	Years per Collision
Non-breeding season 2018-19	0.054	18.5

Table 3-16Eurasian Wigeon CRM Output, WF1 & WF2 Combined

Season	Modelled Collisions per Year	Years/ months per Collision
Non-breeding season 2018-19	0.182	5.5 years
Non-breeding season 2020-21	2.013	6 months
Non-breeding season mean	0.794	1.3 years

Table 3-17
Peregrine Falcon CRM Output, WF1 & WF2 Combined

Season	Modelled Collisions per Year	Years per Collision
Non-breeding season 2018-19	0.016	62.5
Non-breeding season 2020-21	0.036	27.8
Non-breeding season mean	0.017	58.8

Table 3-18Common Kestrel, WF1 & WF2 Combined

Season	Modelled Collisions per Year	Years per Collision
Breeding season 2021	0.637	1.6

Table 3-19	
European Golden Plover CRM Output, WF1 & WF2	2 Combined

Season	Modelled Collisions per Year	Years/ months per Collision
Non-breeding season 2018-19	0.122	8.2 years
Non-breeding season 2019-20	1.326	9 months
Non-breeding season 2020-21	3.2	4 months
Non-breeding season mean	1.279	9 months

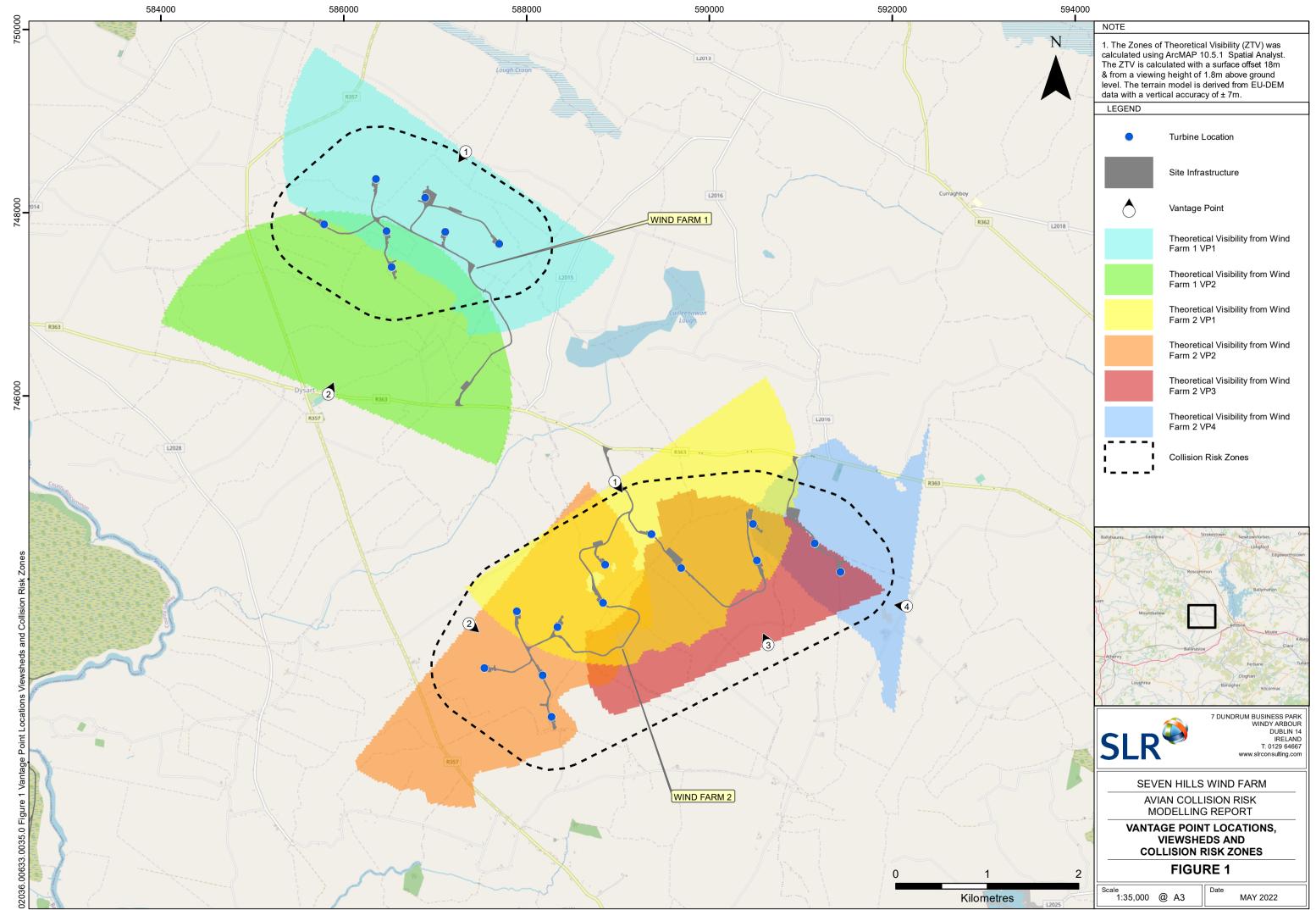
Table 3-20
Northern Lapwing CRM Output, WF1 & WF2 Combined

Season	Modelled Collisions per Year	Years/ months per Collision				
Non-breeding season 2018-19	0.520	1.9 years				
Non-breeding season 2019-20	0.747	1.3 years				
Non-breeding season 2020-21	3.726	3-4 months				
Non-breeding season mean	1.66	7 months				
Breeding season 2020	0.101	9.9 years				
Breeding season 2021	1.512	8 months				
Breeding season mean	0.855	1.2 years				

Table 3-21 Eurasian Curlew CRM Output, WF1 & WF2 Combined

Season	Modelled Collisions per Year	Months per Collision
Non-breeding season 2018-19	1.171	10

Table 3-22 Black-headed Gull CRM Output, WF1 & WF2 Combined


Season	Modelled Collisions per Year	Years/ months per Collision
Breeding season 2020	0.138	7.2 years
Breeding season 2021	1.256	9.6 months
Breeding season mean	0.697	1.4 years

3.3.1 Notes on Distribution of Flightlines

As stated in Section 2.1 (footnote⁸), the inclusion of all flights within 500m is a necessarily precautionary approach (to take into account spatial errors in mapping), but at Seven Hills, many flights occurred close to VPs and are therefore known to be mapped accurately. Collision risk for some species could therefore be overestimated here, e.g. by the inclusion of flights around landscape features such as Feacle Turlough near WF2 VP3 (where birds gather for roosting and foraging), most of which were not recorded entering the rotor swept area. The result of this is that collision risk for some species may have been over-estimated. Specific examples are as follows:

- Eurasian curlew: the majority of flightlines were concentrated around Feacle Turlough (2018/19 survey report Figures 4, 5, 7 & 8);
- Northern lapwing: many flightlines were concentrated around Feacle Turlough (2019/20 survey report Figure 3, and 2020/21 survey report Figure 6);
- European golden plover: the majority of flightlines were concentrated around Feacle Turlough (2020/21 survey report Figure 5);
- Eurasian wigeon: activity was focussed at Feacle Turlough (2020/21 survey report Figure 7); and
- Black-headed gull: activity was focussed at Feacle Turlough and Four Roads Turlough (2020 survey report Figure 3 and 2021 survey report Figure 3).

FIGURES

@ OpenStreetMap (and) contributors, CC-BY-SA © This drawing and its content are the copyright of SLR Consulting Ltd and may not be reproduced or amended except by prior written permission. SLR Consulting Ltd accepts no liability for any amendments made by other persons.

APPENDIX 01

Collision Probability Calculations

Whooper Swan

K: [1D or [3D] (0 or 1)	1		Calculation	n of alpha a	and p(colli	sion) as a fi	unction of rac	lius			
NoBlades	3						Upwind:			Downwind	1:
MaxChord	4.3	m	r/R	c/C	α	collide		contribution	collide		contribution
Pitch (degrees)	0		radius	chord	alpha	length	p(collision)	from radius r	length	p(collision)	from radius r
BirdLength	1.52	m	0.025	0.575	6.74	32.19	1.00	0.00125	32.19	1.00	0.00125
Wingspan	2.3	m	0.075	0.575	2.25	10.73	0.38	0.00281	10.73	0.38	0.00281
F: Flapping (0) or gliding (+1)	0		0.125	0.702	1.35	7.17	0.25	0.00313	7.17	0.25	0.00313
			0.175	0.860	0.96	5.78	0.20	0.00354	5.78	0.20	0.00354
Bird speed	17.3	m/sec	0.225	0.994	0.75	4.93	0.17	0.00388	4.93	0.17	0.00388
RotorDiam	162	m	0.275	0.947	0.61	4.02	0.14	0.00386	4.02	0.14	0.00386
RotationPeriod	4.96	sec	0.325	0.899	0.52	3.53	0.12	0.00401	3.53	0.12	0.00401
			0.375	0.851	0.45	3.17	0.11	0.00415	3.17	0.11	0.00415
			0.425	0.804	0.40	2.89	0.10	0.00430	2.89	0.10	0.00430
			0.475	0.756	0.35	2.67	0.09	0.00444	2.67	0.09	0.00444
Bird aspect ratioo: β	0.66		0.525	0.708	0.32	2.50	0.09	0.00458	2.50	0.09	0.00458
			0.575	0.660	0.29	2.35	0.08	0.00473	2.35	0.08	0.00473
			0.625	0.613	0.27	2.23	0.08	0.00487	2.23	0.08	0.00487
			0.675	0.565	0.25	2.13	0.07	0.00502	2.13	0.07	0.00502
			0.725	0.517	0.23	2.04	0.07	0.00516	2.04	0.07	0.00516
			0.775	0.470	0.22	1.96	0.07	0.00531	1.96	0.07	0.00531
			0.825	0.422	0.20	1.89	0.07	0.00545	1.89	0.07	0.00545
			0.875	0.374	0.19	1.83	0.06	0.00560	1.83	0.06	0.00560
			0.925	0.327	0.18	1.78	0.06	0.00574	1.78	0.06	0.00574
			0.975	0.279	0.17	1.73	0.06	0.00589	1.73	0.06	0.00589
				Overall p(c	ollision) =		Upwind	8.8%		Downwind	8.8%
								Average	8.8%		

K: [1D or [3D] (0 or 1)	1		Calculatio	n of alpha a	and p(colli	sion) as a fu	inction of rac	lius			
NoBlades	3						Upwind:			1:	
MaxChord	4.3	m	r/R	c/C	α	collide		contribution	collide		contribution
Pitch (degrees)	0		radius	chord	alpha	length	p(collision)	from radius r	length	p(collision)	from radius r
BirdLength	0.72	m	0.025	0.575	6.28	24.81	0.93	0.00116	24.81	0.93	0.00116
Wingspan	1.48	m	0.075	0.575	2.09	8.27	0.31	0.00233	8.27	0.31	0.00233
F: Flapping (0) or gliding (+1)	0		0.125	0.702	1.26	5.64	0.21	0.00265	5.64	0.21	0.00265
			0.175	0.860	0.90	4.64	0.17	0.00305	4.64	0.17	0.00305
Bird speed	16.1	m/sec	0.225	0.994	0.70	4.01	0.15	0.00339	4.01	0.15	0.00339
RotorDiam	162	m	0.275	0.947	0.57	3.17	0.12	0.00327	3.17	0.12	0.00327
RotationPeriod	4.96	sec	0.325	0.899	0.48	2.59	0.10	0.00316	2.59	0.10	0.00316
			0.375	0.851	0.42	2.25	0.08	0.00317	2.25	0.08	0.00317
			0.425	0.804	0.37	2.00	0.07	0.00319	2.00	0.07	0.00319
			0.475	0.756	0.33	1.79	0.07	0.00320	1.79	0.07	0.00320
Bird aspect ratioo: β	0.49		0.525	0.708	0.30	1.63	0.06	0.00321	1.63	0.06	0.00321
			0.575	0.660	0.27	1.49	0.06	0.00323	1.49	0.06	0.00323
			0.625	0.613	0.25	1.38	0.05	0.00324	1.38	0.05	0.00324
			0.675	0.565	0.23	1.28	0.05	0.00326	1.28	0.05	0.00326
			0.725	0.517	0.22	1.20	0.05	0.00327	1.20	0.05	0.00327
			0.775	0.470	0.20	1.13	0.04	0.00329	1.13	0.04	0.00329
			0.825	0.422	0.19	1.07	0.04	0.00330	1.07	0.04	0.00330
			0.875	0.374	0.18	1.01	0.04	0.00332	1.01	0.04	0.00332
			0.925	0.327	0.17	0.96	0.04	0.00333	0.96	0.04	0.00333
			0.975	0.279	0.16	0.91	0.03	0.00334	0.91	0.03	0.00334
				Overall p(c	ollision) =		Upwind	6.1%		Downwind	6.1%
								Average	6.1%		

Greenland White-fronted Goose

Eurasian Wigeon

K: [1D or [3D] (0 or 1)	1		Calculation	n of alpha a	and p(collis	sion) as a fu	unction of rac	dius			
NoBlades	3						Upwind:			Downwind	1:
MaxChord	4.3	m	r/R	c/C	α	collide		contribution	collide		contribution
Pitch (degrees)	0		radius	chord	alpha	length	p(collision)	from radius r	length	p(collision)	from radius r
BirdLength	0.48	m	0.025	0.575	4.02	13.14	0.77	0.00096	13.14	0.77	0.00096
Wingspan	0.8	m	0.075	0.575	1.34	4.38	0.26	0.00193	4.38	0.26	0.00193
F: Flapping (0) or gliding (+1)	0		0.125	0.702	0.80	3.06	0.18	0.00225	3.06	0.18	0.00225
			0.175	0.860	0.57	2.60	0.15	0.00267	2.60	0.15	0.00267
Bird speed	10.3	m/sec	0.225	0.994	0.45	2.39	0.14	0.00315	2.39	0.14	0.00315
RotorDiam	162	m	0.275	0.947	0.37	1.97	0.12	0.00317	1.97	0.12	0.00317
RotationPeriod	4.96	sec	0.325	0.899	0.31	1.67	0.10	0.00319	1.67	0.10	0.00319
			0.375	0.851	0.27	1.46	0.09	0.00321	1.46	0.09	0.00321
			0.425	0.804	0.24	1.30	0.08	0.00323	1.30	0.08	0.00323
			0.475	0.756	0.21	1.17	0.07	0.00325	1.17	0.07	0.00325
Bird aspect ratioo: β	0.60		0.525	0.708	0.19	1.06	0.06	0.00327	1.06	0.06	0.00327
			0.575	0.660	0.17	0.98	0.06	0.00329	0.98	0.06	0.00329
			0.625	0.613	0.16	0.90	0.05	0.00331	0.90	0.05	0.00331
			0.675	0.565	0.15	0.84	0.05	0.00333	0.84	0.05	0.00333
			0.725	0.517	0.14	0.79	0.05	0.00335	0.79	0.05	0.00335
			0.775	0.470	0.13	0.74	0.04	0.00337	0.74	0.04	0.00337
			0.825	0.422	0.12	0.70	0.04	0.00339	0.70	0.04	0.00339
			0.875	0.374	0.11	0.66	0.04	0.00341	0.66	0.04	0.00341
			0.925	0.327	0.11	0.63	0.04	0.00343	0.63	0.04	0.00343
			0.975	0.279	0.10	0.60	0.04	0.00345	0.60	0.04	0.00345
				Overall p(c	ollision) =		Upwind	6.1%		Downwind	6.1%
								Average	6.1%		

Peregrine Falcon

K: [1D or [3D] (0 or 1)	1		Calculation	n of alpha a	and p(collis	sion) as a fu	unction of rac	lius			
NoBlades	3						Upwind:			Downwind	1:
MaxChord	4.3	m	r/R	c/C	α	collide		contribution	collide		contribution
Pitch (degrees)	0		radius	chord	alpha	length	p(collision)	from radius r	length	p(collision)	from radius r
BirdLength	0.45	m	0.025	0.575	5.46	19.50	0.84	0.00105	19.50	0.84	0.00105
Wingspan	1.1	m	0.075	0.575	1.82	6.50	0.28	0.00211	6.50	0.28	0.00211
F: Flapping (0) or gliding (+1)	0		0.125	0.702	1.09	4.49	0.19	0.00243	4.49	0.19	0.00243
			0.175	0.860	0.78	3.74	0.16	0.00283	3.74	0.16	0.00283
Bird speed	14	m/sec	0.225	0.994	0.61	3.26	0.14	0.00317	3.26	0.14	0.00317
RotorDiam	162	m	0.275	0.947	0.50	2.57	0.11	0.00305	2.57	0.11	0.00305
RotationPeriod	4.96	sec	0.325	0.899	0.42	2.08	0.09	0.00293	2.08	0.09	0.00293
			0.375	0.851	0.36	1.78	0.08	0.00289	1.78	0.08	0.00289
			0.425	0.804	0.32	1.56	0.07	0.00286	1.56	0.07	0.00286
			0.475	0.756	0.29	1.38	0.06	0.00284	1.38	0.06	0.00284
Bird aspect ratioo: β	0.41		0.525	0.708	0.26	1.24	0.05	0.00282	1.24	0.05	0.00282
			0.575	0.660	0.24	1.12	0.05	0.00279	1.12	0.05	0.00279
			0.625	0.613	0.22	1.03	0.04	0.00277	1.03	0.04	0.00277
			0.675	0.565	0.20	0.94	0.04	0.00274	0.94	0.04	0.00274
			0.725	0.517	0.19	0.87	0.04	0.00272	0.87	0.04	0.00272
			0.775	0.470	0.18	0.81	0.03	0.00270	0.81	0.03	0.00270
			0.825	0.422	0.17	0.75	0.03	0.00267	0.75	0.03	0.00267
			0.875	0.374	0.16	0.70	0.03	0.00265	0.70	0.03	0.00265
			0.925	0.327	0.15	0.66	0.03	0.00263	0.66	0.03	0.00263
			0.975	0.279	0.14	0.62	0.03	0.00260	0.62	0.03	0.00260
				Overall p(c	ollision) =		Upwind	5.3%		Downwind	5.3%
								Average	5.3%		

Common Kestrel

			i oi aipilia o		31011) 43 4 10	inction of rac	lius			
3						Upwind:			Downwind	1:
4.3	m	r/R	c/C	α	collide		contribution	collide		contribution
0		radius	chord	alpha	length	p(collision)	from radius r	length	p(collision)	from radius r
0.34	m	0.025	0.575	4.95	16.20	0.77	0.00096	16.20	0.77	0.00096
0.8	m	0.075	0.575	1.65	5.40	0.26	0.00193	5.40	0.26	0.00193
0		0.125	0.702	0.99	3.78	0.18	0.00225	3.78	0.18	0.00225
		0.175	0.860	0.71	3.18	0.15	0.00265	3.18	0.15	0.00265
12.7	m/sec	0.225	0.994	0.55	2.79	0.13	0.00299	2.79	0.13	0.00299
162	m	0.275	0.947	0.45	2.19	0.10	0.00287	2.19	0.10	0.00287
4.96	sec	0.325	0.899	0.38	1.81	0.09	0.00280	1.81	0.09	0.00280
		0.375	0.851	0.33	1.55	0.07	0.00276	1.55	0.07	0.00276
		0.425	0.804	0.29	1.35	0.06	0.00272	1.35	0.06	0.00272
		0.475	0.756	0.26	1.19	0.06	0.00268	1.19	0.06	0.00268
0.43		0.525	0.708	0.24	1.06	0.05	0.00265	1.06	0.05	0.00265
		0.575	0.660	0.22	0.95	0.05	0.00261	0.95	0.05	0.00261
		0.625	0.613	0.20	0.86	0.04	0.00257	0.86	0.04	0.00257
		0.675	0.565	0.18	0.79	0.04	0.00253	0.79	0.04	0.00253
		0.725	0.517	0.17	0.72	0.03	0.00249	0.72	0.03	0.00249
		0.775	0.470	0.16	0.66	0.03	0.00245	0.66	0.03	0.00245
		0.825	0.422	0.15	0.61	0.03	0.00241	0.61	0.03	0.00241
		0.875	0.374	0.14	0.57	0.03	0.00237	0.57	0.03	0.00237
		0.925	0.327	0.13	0.53	0.03	0.00233	0.53	0.03	0.00233
		0.975	0.279	0.13	0.49	0.02	0.00229	0.49	0.02	0.00229
			Overall p(c	ollision) =		Upwind	4.9%		Downwind	4.9%
							A.v	4.0%		
	4.3 0 0.34 0.8 0 12.7 162 4.96	4.3 m 0 0.34 m 0.8 m 0 12.7 m/sec 162 m 4.96 sec	4.3 m r/R 0 radius 0.34 m 0.025 0.8 m 0.075 0 0.125 0.175 12.7 m/sec 0.225 162 m 0.275 0.43 0.525 0.475 0.43 0.525 0.625 0.43 0.625 0.675 0.43 0.625 0.725 0.43 0.825 0.825 0.43 0.925 0.925 0.43 0.925 0.975	4.3 m r/R c/C 0 radius chord 0.34 m 0.025 0.575 0.8 m 0.075 0.575 0 0.125 0.702 0.34 m 0.025 0.575 0.8 m 0.0125 0.702 0 0.125 0.702 0.944 162 m 0.275 0.947 4.96 sec 0.325 0.899 162 m 0.275 0.947 4.96 sec 0.325 0.804 0.425 0.804 0.425 0.804 0.43 0.525 0.708 0.605 0.43 0.525 0.708 0.605 0.43 0.525 0.613 0.625 0.43 0.625 0.613 0.565 0.43 0.625 0.422 0.517 0.45 0.775 0.470 0.775 0.825 0.4	4.3 m r/R c/C α 0 radius chord alpha 0.34 m 0.025 0.575 4.95 0.8 m 0.075 0.575 1.65 0 0.125 0.702 0.99 12.7 m/sec 0.225 0.994 0.55 162 m 0.275 0.947 0.45 4.96 sec 0.325 0.899 0.38 0 0.375 0.851 0.33 162 m 0.275 0.947 0.45 4.96 sec 0.325 0.899 0.38 0.425 0.804 0.29 0.33 0.425 0.804 0.29 0.24 0.475 0.756 0.26 0.24 0.43 0.525 0.708 0.24 0.43 0.525 0.613 0.20 0.43 0.575 0.660 0.22 0.43 0.575 0.470 0.16 0.43 0.725 0.517 0.17 </td <td>4.3 m r/R c/C α collide 0 radius chord alpha length 0.34 m 0.025 0.575 4.95 16.20 0.34 m 0.025 0.575 4.95 16.20 0.8 m 0.075 0.575 1.65 5.40 0 0.125 0.702 0.99 3.78 12.7 m/sec 0.225 0.944 0.55 2.79 162 m 0.275 0.947 0.45 2.19 4.96 sec 0.325 0.899 0.38 1.81 4.96 sec 0.325 0.899 0.38 1.81 4.96 sec 0.325 0.804 0.29 1.35 4.96 sec 0.325 0.804 0.29 1.35 4.96 sec 0.375 0.660 0.22 0.95 0.43 0.525 0.708 0.24 1.06</td> <td>4.3 m r/R c/C α collide length p(collision) 0 radius chord alpha length p(collision) 0.34 m 0.025 0.575 4.95 16.20 0.77 0.8 m 0.075 0.575 1.65 5.40 0.26 0 0.125 0.702 0.99 3.78 0.18 0.175 0.860 0.71 3.18 0.15 12.7 m/sec 0.225 0.994 0.55 2.79 0.13 162 m 0.275 0.847 0.45 2.19 0.10 4.96 sec 0.325 0.899 0.38 1.81 0.09 4.96 sec 0.375 0.851 0.33 1.55 0.07 4.96 sec 0.325 0.804 0.29 1.35 0.06 0.43 0.525 0.708 0.24 1.06 0.05 0.43</td> <td>4.3 m r/R c/C α collide m contribution 0 radius chord alpha length p(collision) from radius r 0.34 m 0.025 0.575 4.95 16.20 0.77 0.00096 0.8 m 0.075 0.575 1.65 5.40 0.26 0.00193 0 0.125 0.702 0.99 3.78 0.18 0.00255 1.75 0.860 0.71 3.18 0.15 0.00265 12.7 m/sec 0.225 0.944 0.55 2.79 0.13 0.00280 162 m 0.275 0.947 0.45 2.19 0.10 0.00280 4.96 sec 0.325 0.899 0.38 1.81 0.09 0.00280 4.96 sec 0.325 0.804 0.29 1.35 0.07 0.00276 4.96 sec 0.375 0.660 0.22 0.</td> <td>4.3 m r/R c/C α collide contribution collide 0 radius chord alpha length p(collision) from radius r length 0.34 m 0.025 0.575 4.95 16.20 0.77 0.00096 16.20 0.8 m 0.075 0.575 1.65 5.40 0.26 0.00193 5.40 0 0.125 0.702 0.99 3.78 0.18 0.00225 3.78 12.7 m/sec 0.225 0.994 0.55 2.79 0.13 0.00280 1.81 12.7 m/sec 0.225 0.994 0.45 2.19 0.10 0.00287 2.19 4.96 sec 0.325 0.89 0.38 1.81 0.09 0.00280 1.81 4.96 sec 0.325 0.89 0.33 1.55 0.07 0.00276 1.55 4.96 sec 0.375 0.804</td> <td>4.3 m rt/R c/C α collide length model contribution from radius r collide length from radius r collide length model model collide length model model collide length model model collide length model model collide length model model collide model 0.34 m 0.075 0.575 1.65 0.77 3.18 0.00265 3.18 0.00266 1.19 0.10 4.96 sec 0.325 0.899 0.38 1.81 0.09 0.00268 1.81 0.09 4.96 sec 0.375 0.861 0.33 1.55 0.07 0.00266 1.</td>	4.3 m r/R c/C α collide 0 radius chord alpha length 0.34 m 0.025 0.575 4.95 16.20 0.34 m 0.025 0.575 4.95 16.20 0.8 m 0.075 0.575 1.65 5.40 0 0.125 0.702 0.99 3.78 12.7 m/sec 0.225 0.944 0.55 2.79 162 m 0.275 0.947 0.45 2.19 4.96 sec 0.325 0.899 0.38 1.81 4.96 sec 0.325 0.899 0.38 1.81 4.96 sec 0.325 0.804 0.29 1.35 4.96 sec 0.325 0.804 0.29 1.35 4.96 sec 0.375 0.660 0.22 0.95 0.43 0.525 0.708 0.24 1.06	4.3 m r/R c/C α collide length p(collision) 0 radius chord alpha length p(collision) 0.34 m 0.025 0.575 4.95 16.20 0.77 0.8 m 0.075 0.575 1.65 5.40 0.26 0 0.125 0.702 0.99 3.78 0.18 0.175 0.860 0.71 3.18 0.15 12.7 m/sec 0.225 0.994 0.55 2.79 0.13 162 m 0.275 0.847 0.45 2.19 0.10 4.96 sec 0.325 0.899 0.38 1.81 0.09 4.96 sec 0.375 0.851 0.33 1.55 0.07 4.96 sec 0.325 0.804 0.29 1.35 0.06 0.43 0.525 0.708 0.24 1.06 0.05 0.43	4.3 m r/R c/C α collide m contribution 0 radius chord alpha length p(collision) from radius r 0.34 m 0.025 0.575 4.95 16.20 0.77 0.00096 0.8 m 0.075 0.575 1.65 5.40 0.26 0.00193 0 0.125 0.702 0.99 3.78 0.18 0.00255 1.75 0.860 0.71 3.18 0.15 0.00265 12.7 m/sec 0.225 0.944 0.55 2.79 0.13 0.00280 162 m 0.275 0.947 0.45 2.19 0.10 0.00280 4.96 sec 0.325 0.899 0.38 1.81 0.09 0.00280 4.96 sec 0.325 0.804 0.29 1.35 0.07 0.00276 4.96 sec 0.375 0.660 0.22 0.	4.3 m r/R c/C α collide contribution collide 0 radius chord alpha length p(collision) from radius r length 0.34 m 0.025 0.575 4.95 16.20 0.77 0.00096 16.20 0.8 m 0.075 0.575 1.65 5.40 0.26 0.00193 5.40 0 0.125 0.702 0.99 3.78 0.18 0.00225 3.78 12.7 m/sec 0.225 0.994 0.55 2.79 0.13 0.00280 1.81 12.7 m/sec 0.225 0.994 0.45 2.19 0.10 0.00287 2.19 4.96 sec 0.325 0.89 0.38 1.81 0.09 0.00280 1.81 4.96 sec 0.325 0.89 0.33 1.55 0.07 0.00276 1.55 4.96 sec 0.375 0.804	4.3 m rt/R c/C α collide length model contribution from radius r collide length from radius r collide length model model collide length model model collide length model model collide length model model collide length model model collide model 0.34 m 0.075 0.575 1.65 0.77 3.18 0.00265 3.18 0.00266 1.19 0.10 4.96 sec 0.325 0.899 0.38 1.81 0.09 0.00268 1.81 0.09 4.96 sec 0.375 0.861 0.33 1.55 0.07 0.00266 1.

European Golden Plover

K: [1D or [3D] (0 or 1)	1		Calculation	n of alpha a	and p(collis	sion) as a fu	unction of rac	dius			
NoBlades	3						Upwind:			Downwind	1:
MaxChord	4.3	m	r/R	c/C	α	collide		contribution	collide		contribution
Pitch (degrees)	0		radius	chord	alpha	length	p(collision)	from radius r	length	p(collision)	from radius r
BirdLength	0.28	m	0.025	0.575	6.82	21.78	0.75	0.00094	21.78	0.75	0.00094
Wingspan	0.72	m	0.075	0.575	2.27	7.26	0.25	0.00188	7.26	0.25	0.00188
F: Flapping (0) or gliding (+1)	0		0.125	0.702	1.36	5.10	0.18	0.00220	5.10	0.18	0.00220
			0.175	0.860	0.97	4.31	0.15	0.00260	4.31	0.15	0.00260
Bird speed	17.5	m/sec	0.225	0.994	0.76	3.79	0.13	0.00294	3.79	0.13	0.00294
RotorDiam	162	m	0.275	0.947	0.62	2.97	0.10	0.00282	2.97	0.10	0.00282
RotationPeriod	4.96	sec	0.325	0.899	0.52	2.41	0.08	0.00270	2.41	0.08	0.00270
			0.375	0.851	0.45	1.99	0.07	0.00258	1.99	0.07	0.00258
			0.425	0.804	0.40	1.68	0.06	0.00246	1.68	0.06	0.00246
			0.475	0.756	0.36	1.45	0.05	0.00238	1.45	0.05	0.00238
Bird aspect ratioo: β	0.39		0.525	0.708	0.32	1.27	0.04	0.00230	1.27	0.04	0.00230
			0.575	0.660	0.30	1.12	0.04	0.00223	1.12	0.04	0.00223
			0.625	0.613	0.27	1.00	0.03	0.00216	1.00	0.03	0.00216
			0.675	0.565	0.25	0.89	0.03	0.00209	0.89	0.03	0.00209
			0.725	0.517	0.24	0.80	0.03	0.00201	0.80	0.03	0.00201
			0.775	0.470	0.22	0.72	0.03	0.00194	0.72	0.03	0.00194
			0.825	0.422	0.21	0.66	0.02	0.00187	0.66	0.02	0.00187
			0.875	0.374	0.19	0.59	0.02	0.00180	0.59	0.02	0.00180
			0.925	0.327	0.18	0.54	0.02	0.00172	0.54	0.02	0.00172
			0.975	0.279	0.17	0.49	0.02	0.00165	0.49	0.02	0.00165
				Overall p(c	ollision) =		Upwind	4.3%		Downwind	4.3%
								Average	4.3%		

Northern Lapwing

K: [1D or [3D] (0 or 1)	1		Calculation	n of alpha a	and p(collis	sion) as a fi	unction of rac	lius			
NoBlades	3						Upwind:			Downwind	1:
MaxChord	4.3	m	r/R	c/C	α	collide		contribution	collide		contribution
Pitch (degrees)	0		radius	chord	alpha	length	p(collision)	from radius r	length	p(collision)	from radius r
BirdLength	0.3	m	0.025	0.575	4.79	15.88	0.78	0.00098	15.88	0.78	0.00098
Wingspan	0.84	m	0.075	0.575	1.60	5.29	0.26	0.00195	5.29	0.26	0.00195
F: Flapping (0) or gliding (+1)	0		0.125	0.702	0.96	3.70	0.18	0.00227	3.70	0.18	0.00227
			0.175	0.860	0.68	3.11	0.15	0.00268	3.11	0.15	0.00268
Bird speed	12.3	m/sec	0.225	0.994	0.53	2.73	0.13	0.00302	2.73	0.13	0.00302
RotorDiam	162	m	0.275	0.947	0.44	2.14	0.11	0.00289	2.14	0.11	0.00289
RotationPeriod	4.96	sec	0.325	0.899	0.37	1.74	0.09	0.00277	1.74	0.09	0.00277
			0.375	0.851	0.32	1.47	0.07	0.00271	1.47	0.07	0.00271
			0.425	0.804	0.28	1.27	0.06	0.00266	1.27	0.06	0.00266
			0.475	0.756	0.25	1.12	0.06	0.00262	1.12	0.06	0.00262
Bird aspect ratioo: β	0.36		0.525	0.708	0.23	1.00	0.05	0.00257	1.00	0.05	0.00257
			0.575	0.660	0.21	0.89	0.04	0.00252	0.89	0.04	0.00252
			0.625	0.613	0.19	0.81	0.04	0.00248	0.81	0.04	0.00248
			0.675	0.565	0.18	0.73	0.04	0.00243	0.73	0.04	0.00243
			0.725	0.517	0.17	0.67	0.03	0.00238	0.67	0.03	0.00238
			0.775	0.470	0.15	0.61	0.03	0.00233	0.61	0.03	0.00233
			0.825	0.422	0.15	0.56	0.03	0.00229	0.56	0.03	0.00229
			0.875	0.374	0.14	0.52	0.03	0.00224	0.52	0.03	0.00224
			0.925	0.327	0.13	0.48	0.02	0.00219	0.48	0.02	0.00219
			0.975	0.279	0.12	0.45	0.02	0.00215	0.45	0.02	0.00215
				Overall p(c	ollision) =		Upwind	4.8%		Downwind	4.8%
								Average	4.8%		

Eurasian Curlew

K: [1D or [3D] (0 or 1)	1		Calculation	n of alpha a	and p(collis	sion) as a fu	unction of rac	lius			
NoBlades	3						Upwind:			Downwind	1:
MaxChord	4.3	m	r/R	c/C	α	collide		contribution	collide		contribution
Pitch (degrees)	0		radius	chord	alpha	length	p(collision)	from radius r	length	p(collision)	from radius r
BirdLength	0.55	m	0.025	0.575	5.15	17.35	0.80	0.00099	17.35	0.80	0.00099
Wingspan	0.9	m	0.075	0.575	1.72	5.78	0.27	0.00199	5.78	0.27	0.00199
F: Flapping (0) or gliding (+1)	0		0.125	0.702	1.03	4.03	0.18	0.00231	4.03	0.18	0.00231
			0.175	0.860	0.74	3.38	0.15	0.00271	3.38	0.15	0.00271
Bird speed	13.2	m/sec	0.225	0.994	0.57	2.99	0.14	0.00309	2.99	0.14	0.00309
RotorDiam	162	m	0.275	0.947	0.47	2.45	0.11	0.00309	2.45	0.11	0.00309
RotationPeriod	4.96	sec	0.325	0.899	0.40	2.08	0.10	0.00310	2.08	0.10	0.00310
			0.375	0.851	0.34	1.81	0.08	0.00310	1.81	0.08	0.00310
			0.425	0.804	0.30	1.60	0.07	0.00311	1.60	0.07	0.00311
			0.475	0.756	0.27	1.43	0.07	0.00311	1.43	0.07	0.00311
Bird aspect ratioo: β	0.61		0.525	0.708	0.25	1.30	0.06	0.00312	1.30	0.06	0.00312
			0.575	0.660	0.22	1.19	0.05	0.00312	1.19	0.05	0.00312
			0.625	0.613	0.21	1.09	0.05	0.00313	1.09	0.05	0.00313
			0.675	0.565	0.19	1.01	0.05	0.00313	1.01	0.05	0.00313
			0.725	0.517	0.18	0.94	0.04	0.00314	0.94	0.04	0.00314
			0.775	0.470	0.17	0.89	0.04	0.00314	0.89	0.04	0.00314
			0.825	0.422	0.16	0.83	0.04	0.00315	0.83	0.04	0.00315
			0.875	0.374	0.15	0.79	0.04	0.00315	0.79	0.04	0.00315
			0.925	0.327	0.14	0.75	0.03	0.00316	0.75	0.03	0.00316
			0.975	0.279	0.13	0.71	0.03	0.00316	0.71	0.03	0.00316
				Overall p(c	ollision) =		Upwind	5.8%		Downwind	5.8%
								Average	5.8%		

Black-headed Gull

K: [1D or [3D] (0 or 1)	1		Calculation	n of alpha a	and p(collis	sion) as a fu	inction of rac	lius			
NoBlades	3						Upwind:			Downwind	1:
MaxChord	4.3	m	r/R	c/C	α	collide		contribution	collide		contribution
Pitch (degrees)	0		radius	chord	alpha	length	p(collision)	from radius r	length	p(collision)	from radius r
BirdLength	0.36	m	0.025	0.575	4.37	15.38	0.83	0.00104	15.38	0.83	0.00104
Wingspan	1.05	m	0.075	0.575	1.46	5.13	0.28	0.00208	5.13	0.28	0.00208
F: Flapping (0) or gliding (+1)	0		0.125	0.702	0.87	3.55	0.19	0.00240	3.55	0.19	0.00240
			0.175	0.860	0.62	2.96	0.16	0.00280	2.96	0.16	0.00280
Bird speed	11.2	m/sec	0.225	0.994	0.49	2.58	0.14	0.00314	2.58	0.14	0.00314
RotorDiam	162	m	0.275	0.947	0.40	2.03	0.11	0.00302	2.03	0.11	0.00302
RotationPeriod	4.96	sec	0.325	0.899	0.34	1.66	0.09	0.00291	1.66	0.09	0.00291
			0.375	0.851	0.29	1.43	0.08	0.00289	1.43	0.08	0.00289
			0.425	0.804	0.26	1.25	0.07	0.00286	1.25	0.07	0.00286
			0.475	0.756	0.23	1.11	0.06	0.00284	1.11	0.06	0.00284
Bird aspect ratioo: β	0.34		0.525	0.708	0.21	0.99	0.05	0.00282	0.99	0.05	0.00282
			0.575	0.660	0.19	0.90	0.05	0.00279	0.90	0.05	0.00279
			0.625	0.613	0.17	0.82	0.04	0.00277	0.82	0.04	0.00277
			0.675	0.565	0.16	0.75	0.04	0.00274	0.75	0.04	0.00274
			0.725	0.517	0.15	0.69	0.04	0.00272	0.69	0.04	0.00272
			0.775	0.470	0.14	0.64	0.03	0.00270	0.64	0.03	0.00270
			0.825	0.422	0.13	0.60	0.03	0.00267	0.60	0.03	0.00267
			0.875	0.374	0.12	0.56	0.03	0.00265	0.56	0.03	0.00265
			0.925	0.327	0.12	0.53	0.03	0.00263	0.53	0.03	0.00263
			0.975	0.279	0.11	0.49	0.03	0.00260	0.49	0.03	0.00260
				Overall p(c	ollision) =		Upwind	5.3%		Downwind	5.3%
								Average	5.3%		

APPENDIX 02

Wind Farm 1 (North) CRM Calculations

Whooper Swan 2018-19

	Viewsheds						
	1	2					
STAGE 1: Estimation of rotor transits							
Step 1.1: Seconds occupancy of the survey risk volume (T _w) ¹ recorded within each viewshed (T _w V)	270	452					
Step 1.2: Unweighted occupancy rate each viewshed (T _w Vrate)							
Minutes survey effort (e)	2,160	1,980					
Windfarm area (ha) visible within viewshed (<i>v</i>)	330.5	174.6					
$T_w V$ rate= $T_w V/e/v$	3.78E-04	1.31E-03					
Step 1.3: Weighted occupancy rate (weighted T _w V rate) ¹							
Effort in hectare-minutes (ve)	713,794	345,787					
Weight: proportion of total effort made at the VP	0.674	0.326					
Weighted T _w V rate (<i>T_wV</i> rate * weight)	2.55E-04	4.27E-04					
Total weighted occupancy rate (z)		0.0	0068	2 bi	irds	pe	er metre per ha/minute
Step 1.4: Total occupancy of risk volume during surveys (T _w)							
Potentially active minutes: non- breeding season (a) ²		11	16,90	9			
Total area of windfarm (survey WP, in ha) ¹			455.	3			

Tw=z*a*WP	36,282 seconds	
Step 1.5: T _w adjusted from survey PCH band to actual PCH (adjT ^w * (not entered))	36,282 seconds	
Step 1.6: Flight risk volume (V _w)		
Actual WP indfarm area (A) ³	1,344,583 m ²	
Height of rotors (h)	180 m	
Actual risk volume: V _w =A*h	242,024,873 m ³	

7
3.14159
81 m
4.3 m
1.52 m
839,732.4 m ³
125.9 seconds
17.3 m/sec
0.34 sec
374 rotor transits

STAGE 2: Probability of Collision for a bird flying through rotors (<i>p</i> (collision)) from SNH spreadhseet ⁴	
STAGE 3: Predicted mortality (birds per year)	
Step 3.1: With no avoidance, turbines operational 95% of the time N*p(collision)*0.95	31.28 collisions
Step 3.2: Adjusted using a range of avoidance rates:	
99.50%	0.156 (approx. one collision every 6-7 yrs)

² The total number of daytime minutes during the period (based on Civil Twilight).

³ Area of WP as defined by the outermost rotors (<u>excluding</u> the 500m buffer).

⁴Assumes bird length=1.52m, wingspan 2.3m, flight speed= 17.3m/sec

Whooper Swan 2020-21

	Viewsheds					
	1	2				
STAGE 1: Estimation of rotor transits						
Step 1.1: Seconds occupancy of the survey risk volume $(T_w)^1$ recorded within each viewshed (T_wV)	0	415				
Step 1.2: Unweighted occupancy rate each viewshed (T _w Vrate)						
Minutes survey effort (<i>e</i>)	2,160	2,160				
Windfarm area (ha) visible within viewshed (<i>v</i>)	330.5	174.6				
$T_w V$ rate= $T_w V/e/v$	0.00E+00	1.10E-03				
Step 1.3: Weighted occupancy rate (weighted T _w V rate) ¹						
Effort in hectare-minutes (ve)	713,794	377,222				
Weight: proportion of total effort made at the VP	0.654	0.346				
Weighted T _w V rate (T_wV rate * weight)	0.00E+00	3.80E-04				
Total weighted occupancy rate (z)			0.000380	bird	s per	metre per ha/minute
Step 1.4: Total occupancy of risk volume during surveys (T _w)						
Potentially active minutes: non-breeding season (a) ²			157,658			
Total area of windfarm (survey WP, in ha) ¹			455.3			
Tw=z*a*WP			27,289	sec	onds	
Step 1.5: T _w adjusted from survey PCH band to actual PCH (adjT ^w * (not entered))			27,289	sec	onds	

99.50%	0.118	(approx. one collision every 9 yrs)
Step 3.2: Adjusted using a range of avoidance rates:		
N*p(collision)*0.95	23.53	collisions
Step 3.1: With no avoidance, turbines operational 95% of the time		
STAGE 3: Predicted mortality (birds per year)		
lying through rotors (<i>p</i> (collision)) from SNH spreadhseet ⁴	0.088	
<i>N=T_r/t</i> STAGE 2: Probability of Collision for a bird	281	rotor transits
Step 1.10: Number of rotor transits (N)		
$t_r = (d+L)/s$	0.34	sec
Flight speed <i>(s)</i>	17.3	m/sec
Step 1.9: Time taken to transit rotor <i>(t)</i>		
$T_r = \operatorname{adj} T_w^* (V_r / V_w)$	94.7	seconds
Step 1.8: Bird occupancy of rotor-swept volume (Tr)	000,102.4	
Rotor-swept bvolume: $V_r = N^* \pi^* R^{2*} (d+L)$	839,732.4	m ³
WS length (L)	1.52	m
Rotor blade width (d)	4.3	m
Rotor radius (R)	81	m
π	3.14159	
Step 1.7: Volume swept by windfarm rotors (V _r) Number of turbines (N)	7	
Actual risk volume: <i>V</i> _w = <i>A</i> * <i>h</i>	242,024,873	m ³
Height of rotors <i>(h)</i>	180	m
Actual WP indfarm area (A) ³	1,344,583	m ²
Step 1.6: Flight risk volume (V _w)		

² The total number of daytime minutes during the period (based on Civil Twilight).

³ Area of WP as defined by the outermost rotors (excluding the 500m buffer).

⁴Assumes bird length=1.52m, wingspan 2.3m, flight speed= 17.3m/sec

Greenland White-fronted Goose 2018-19

	Viewsheds					
	1	2				
STAGE 1: Estimation of rotor transits						
Step 1.1: Seconds occupancy of the survey risk volume (T _w) ¹ recorded within each viewshed (T _w V)	959	0				
Step 1.2: Unweighted occupancy rate each viewshed (T _w Vrate)						
Minutes survey effort (<i>e</i>)	2,160	1,980				
Windfarm area (ha) visible within viewshed (<i>v</i>)	330.5	174.6				
$T_w V$ rate= $T_w V/e/v$	1.34E-03	0.00E+00				
Step 1.3: Weighted occupancy rate (weighted T _w V rate) ¹						
Effort in hectare-minutes (ve)	713,794	345,787				
Weight: proportion of total effort made at the VP	0.674	0.326				
Weighted T_wV rate (T_wV rate * weight)	9.05E-04	0.00E+00				
Total weighted occupancy rate (z)			0.000905	birds	per me	etre per ha/minute
Step 1.4: Total occupancy of risk volume during surveys (T _w)						
Potentially active minutes: breeding season (a) ²			116,909			
Total area of windfarm (survey WP, in ha) ¹		455.3				
Tw=z*a*WP			48,166	secor	nds	
Step 1.5: T _w adjusted from survey PCH band to actual PCH (adjT ^w * (not entered))			48,166	secor	nds	

Step 1.6: Flight risk volume (V _w)		
Actual WP indfarm area (A) ³	1,344,583	m ²
Height of rotors (h)	180	m
Actual risk volume: V _w =A*h	242,024,873	m ³
Step 1.7: Volume swept by windfarm rotors (V _r)		
Number of turbines (N)	7	
Π	3.14159	
Rotor radius (R)	81	m
Rotor blade width (d)	4.3	m
WG length (L)	0.72	m
Rotor-swept bvolume: <i>V_r=N*π*R</i> ^{2*} (<i>d</i> + <i>L</i>)	724,305.3	m ³
Step 1.8: Bird occupancy of rotor-swept volume (Tr)		
$T_r = \operatorname{adj} T_w^* (V_r / V_w)$	144.1	seconds
Step 1.9: Time taken to transit rotor <i>(t)</i>		
Flight speed (s)	16.1	m/sec
$t_r=(d+L)/s$	0.31	sec
Step 1.10: Number of rotor transits (N)		
$N=T_r/t$	462	rotor transits
STAGE 2: Probability of Collision for a		
bird flying through rotors (<i>p</i> (collision)) from SNH spreadsheet⁴	0.061	
STAGE 3: Predicted mortality (birds per year)		
Step 3.1: With no avoidance, tubines		
operational 95% of the time N*p(collision)*0.95	26.79	collisions
Step 3.2: Adjusted using a range of avoidance rates:	20.79	

			(approx. on	e collision every 18-19
	99.80%		0.054 yrs)	-
4	 	 	 	

² The total number of daytime minutes during the period (based on Civil Twilight).

³ Area of WP as defined by the outermost rotors (<u>excluding</u> the 500m buffer).

⁴Assumes bird length=0.72m, wingspan 1.48m, flight speed= 16.1m/sec

European Golden Plover 2018-19

	Viewsheds					
	1	2				
STAGE 1: Estimation of rotor transits						
Step 1.1: Seconds occupancy of the survey risk volume $(T_w)^1$ recorded within each viewshed (T_wV)	0	235				
Step 1.2: Unweighted occupancy rate each viewshed (T _w Vrate)						
Minutes survey effort (e)	2,160	1,980				
Windfarm area (ha) visible within viewshed (<i>v</i>)	330.5	174.6				
$T_w V$ rate= $T_w V/e/v$	0.00E+00	6.79E-04				
Step 1.3: Weighted occupancy rate (weighted T _w V rate) ¹						
Effort in hectare-minutes (ve)	713,794	345,787				
Weight: proportion of total effort made at the VP	0.674	0.326				
Weighted T_wV rate (T_wV rate * weight)	0.00E+00	2.22E-04				
Total weighted occupancy rate (z)			0.000222	birc	ls per	metre per ha/minute
Step 1.4: Total occupancy of risk volume during surveys (T _w)						
Potentially active minutes: non-breeding season (a) ²		116,909				
Total area of windfarm (survey WP, in ha) ¹		455.3				
Tw=z*a*WP		11,794 seconds				
Step 1.5: T_w adjusted from survey PCH band to actual PCH (adj $T^w *$ (not entered))			11,794	sec	onds	

98%	0.101	(approx one collision every 10 yrs)
avoidance rates:		
N*p(collision)*0.95 Step 3.2: Adjusted using a range of	5.03	collisions
operational 95% of the time		
year) Step 3.1: With no avoidance, turbines		
STAGE 3: Predicted mortality (birds per	0.040	
STAGE 2: Probability of Collision for a bird flying through rotors (<i>p</i> (collision)) from SNH spreadsheet ⁴	0.043	
$N=T_r/t$	123	rotor transits
Step 1.10: Number of rotor transits (N)		
$t_r=(d+L)/s$	0.26	sec
Flight speed (s)	17.5	m/sec
Step 1.9: Time taken to transit rotor <i>(t)</i>		
T_r =adj $T_w^*(V_r/V_w)$	32.2	seconds
Step 1.8: Bird occupancy of rotor-swept volume (Tr)	000,020.4	
Rotor-swept bvolume: $V_r=N^*\pi^*R^{2*}(d+L)$	660,820.4	
GP length (L)	0.28	m
Rotor blade width (<i>d</i>)	4.3	m
Rotor radius (R)	81	m
π	3.14159	
Step 1.7: Volume swept by windfarm rotors (V _r) Number of turbines (N)	7	
Actual risk volume: V _w =A*h	242,024,873	m ³
Height of rotors (h)	180	m
Actual WP indfarm area (A) ³	1,344,583	m ²

² The total number of daytime minutes during the period (based on Civil Twilight).

³ Area of WP as defined by the outermost rotors (<u>excluding</u> the 500m buffer).

⁴Assumes bird length=0.28m, wingspan 0.72m, flight speed= 17.5m/sec

European Golden Plover 2019-20

	Viewsheds						
	1	2					
STAGE 1: Estimation of rotor transits							
Step 1.1: Seconds occupancy of the survey risk volume $(T_w)^1$ recorded within each viewshed (T_wV)	0	1,736					
Step 1.2: Unweighted occupancy rate each viewshed (T _w Vrate)							
Minutes survey effort (e)	2,880	2,880					
Windfarm area (ha) visible within viewshed (<i>v</i>)	330.5	174.6					
$T_w V$ rate= $T_w V/e/v$	0.00E+00	3.45E-03					
Step 1.3: Weighted occupancy rate (weighted T _w V rate) ¹							
Effort in hectare-minutes (ve)	951,725	502,963					
Weight: proportion of total effort made at the VP	0.654	0.346					
Weighted T_wV rate (T_wV rate * weight)	0.00E+00	1.19E-03					
Total weighted occupancy rate (z)			0.001193	birds p	per met	tre per ha/minute)
Step 1.4: Total occupancy of risk volume during surveys (T _w)							
Potentially active minutes: non-breeding season (a) ²			172,360				
Total area of windfarm (survey WP, in ha) ¹	455.3						
Tw=z*a*WP		93,635 seconds					
Step 1.5: T _w adjusted from survey PCH band to actual PCH (adjT ^w * (not entered))			93,635	secon	ds		

98%	0.798	(approx one collision every 1-2 yrs)
avoidance rates:		
N*p(collision)*0.95 Step 3.2: Adjusted using a range of	39.90	collisions
operational 95% of the time		
Step 3.1: With no avoidance, turbines		
STAGE 3: Predicted mortality (birds per year)		
flying through rotors (<i>p</i> (collision)) from SNH spreadhseet ⁴	0.043	
$N=T_{n}/t$ STAGE 2: Probability of Collision for a bird	977	rotor transits
Step 1.10: Number of rotor transits (N)		
$t_r=(d+L)/s$	0.26	sec
Flight speed <i>(s)</i>	17.5	m/sec
Step 1.9: Time taken to transit rotor (t)	200.1	3600103
T_r =adj $T_w^*(V_r/Vw)$	255.7	seconds
Step 1.8: Bird occupancy of rotor-swept volume (Tr)		
Rotor-swept bvolume: $V_r = N^* \pi^* R^{2*} (d+L)$	660,820.4	
GP length (L)	0.28	m
Rotor blade width <i>(d)</i>	4.3	m
Rotor radius (R)		m
π	3.14159	
(Vr) Number of turbines (N)	7	
Step 1.7: Volume swept by windfarm rotors		
Actual risk volume: $V_w = A^*h$	242,024,873	m ³
Height of rotors (h)	180	m
Actual WP indfarm area (A) ³	1,344,583	m ²

² The total number of daytime minutes during the period (based on Civil Twilight).

³ Area of WP as defined by the outermost rotors (<u>excluding</u> the 500m buffer).

⁴Assumes bird length=0.28m, wingspan 0.72m, flight speed= 17.5m/sec

European Golden Plover 2020-21

	Viewsheds							
	1	2						
STAGE 1: Estimation of rotor transits								
Step 1.1: Seconds occupancy of the survey risk volume (T _w) ¹ recorded within each viewshed (T _w V)	849	0						
Step 1.2: Unweighted occupancy rate each viewshed (T _w Vrate)								
Minutes survey effort (<i>e</i>)	2,520	2,520						
Windfarm area (ha) visible within viewshed (<i>v</i>)	330.5	174.6						
$T_w V$ rate= $T_w V/e/v$	1.02E-03	0.00E+00						
Step 1.3: Weighted occupancy rate (weighted <i>T_wV rate</i>) ¹								
Effort in hectare-minutes (ve)	832,759	440,093						
Weight: proportion of total effort made at the VP	0.654	0.346						
Weighted T_wV rate (T_wV rate * weight)	6.67E-04	0.00E+00						
Total weighted occupancy rate (z)			0.000667	7 bi	rds p	er me	tre per ha/m	inute
Step 1.4: Total occupancy of risk volume during surveys (T _w)								
Potentially active minutes: non-breeding season (a) ²	171,618							
Total area of windfarm (survey WP, in ha) ¹	455.3							
Tw=z*a*WP	52,105 seconds							
Step 1.5: T _w adjusted from survey PCH band to actual PCH (adjT ^w * (not entered))			52,10	ō se	cond	ls		

98%	0.444	(approx one collision every 2 yrs)
avoidance rates:		
N*p(collision)*0.95 Step 3.2: Adjusted using a range of	22.21	collisions
operational 95% of the time		
Step 3.1: With no avoidance, turbines		
STAGE 3: Predicted mortality (birds per year)		
STAGE 2: Probability of Collision for a bird flying through rotors (<i>p</i> (collision)) from SNH spreadhseet ⁴	0.043	
$N=T_r/t$	544	rotor transits
Step 1.10: Number of rotor transits (N)		
$t_r=(d+L)/s$	0.26	sec
Flight speed (s)	17.5	m/sec
Step 1.9: Time taken to transit rotor <i>(t)</i>		
$T_r = \operatorname{adj} T_w^*(V_r/Vw)$	142.3	seconds
Step 1.8: Bird occupancy of rotor-swept volume (Tr)		
Rotor-swept bvolume: $V_r = N^* \pi^* R^{2*} (d+L)$	660,820.4	m ³
GP length (L)	0.28	m
Rotor blade width (d)	4.3	m
Rotor radius (R)	81	m
π	3.14159	
(Vr) Number of turbines (N)	7	
Step 1.7: Volume swept by windfarm rotors		
Actual risk volume: $V_w = A^*h$	242,024,873	
Height of rotors (h)	180	m
Actual WP indfarm area $(A)^3$	1,344,583	m ²

² The total number of daytime minutes during the period (based on Civil Twilight).

³ Area of WP as defined by the outermost rotors (<u>excluding</u> the 500m buffer).

⁴Assumes bird length=0.28m, wingspan 0.72m, flight speed= 17.5m/sec

Northern Lapwing 2019-20

	Viewsheds					
	1	2				
STAGE 1: Estimation of rotor transits						
Step 1.1: Seconds occupancy of the survey risk volume $(T_w)^1$ recorded within each viewshed (T_wV)	450	0				
Step 1.2: Unweighted occupancy rate each viewshed (T _w Vrate)						
Minutes survey effort (e)	2,520	2,520				
Windfarm area (ha) visible within viewshed (<i>v</i>)	330.5	174.6				
$T_w V$ rate= $T_w V/e/v$	5.40E-04	0.00E+00				
Step 1.3: Weighted occupancy rate (weighted T _w V rate) ¹						
Effort in hectare-minutes (ve)	832,759	440,093				
Weight: proportion of total effort made at the VP	0.654	0.346				
Weighted T_wV rate (T_wV rate * weight)	3.54E-04	0.00E+00				
Total weighted occupancy rate (z)			0.000354	birds	per m	netre per ha/minute
Step 1.4: Total occupancy of risk volume during surveys (T _w)						
Potentially active minutes: non-breeding season (a) ²		148,282				
Total area of windfarm (survey WP, in ha) ¹		455.3				
Tw=z*a*WP		23,868 seconds				
Step 1.5: T_w adjusted from survey PCH band to actual PCH (adj $T^w *$ (not entered))			23,868	seco	nds	

	(approx one collision every 6-7
7.98	collisions
0.048	
175	rotor transits
0.37	sec
12.3	m/sec
00.0	Seconds
65.5	seconds
,	
663,706.1	m ³
0.3	m
4.3	m
	m
7	
242,024,873	m ³
	m
, ,	m ²
	0.3 663,706.1 65.5 12.3 0.37 175 0.048

² The total number of daytime minutes during the period (based on Civil Twilight).

³ Area of WP as defined by the outermost rotors (<u>excluding</u> the 500m buffer).

⁴Assumes bird length=0.30m, wingspan 0.84m, flight speed= 12.3m/sec

Black-headed Gull 2021

	Viewsheds						
	1	2					
STAGE 1: Estimation of rotor transits							
Step 1.1: Seconds occupancy of the survey risk volume $(T_w)^1$ recorded within each viewshed (T_wV)	1,834	0					
Step 1.2: Unweighted occupancy rate each viewshed (T _w Vrate)							
Minutes survey effort (<i>e</i>)	1,800	1,800					
Windfarm area (ha) visible within viewshed (<i>v</i>)	330.5	174.6					
$T_w V$ rate= $T_w V/e/v$	3.08E-03	0.00E+00					
Step 1.3: Weighted occupancy rate (weighted T _w V rate) ¹							
Effort in hectare-minutes (ve)	594,828	314,352					
Weight: proportion of total effort made at the VP	0.654	0.346					
Weighted T_wV rate (T_wV rate * weight)	2.02E-03	0.00E+00					
Total weighted occupancy rate (z)			0.002017	bir	ds pe	er m	netre per ha/minute
Step 1.4: Total occupancy of risk volume during surveys (T _w)							
Potentially active minutes: non-breeding season (a) ²			156,993				
Total area of windfarm (survey WP, in ha) ¹		455.3					
Tw=z*a*WP		144,187 seconds					
Step 1.5: T _w adjusted from survey PCH band to actual PCH (adjT ^w * (not entered))			144,187	se	cond	ls	

98%	0.969	(approx one collision every 1 yrs)
avoidance rates:		· · · · · ·
N*p(collision)*0.95 Step 3.2: Adjusted using a range of	48.47	collisions
operational 95% of the time		
year) Step 3.1: With no avoidance, turbines		
STAGE 3: Predicted mortality (birds per	0.055	
flying through rotors (p(collision)) from SNH spreadsheet ⁴	0.053	
STAGE 2: Probability of Collision for a bird		
Step 1.10: Number of rotor transits (N)	963	rotor transits
	0.72	
$t_r=(d+L)/s$	0.42	
Flight speed (s)	11.2	m/sec
Step 1.9: Time taken to transit rotor (t)	-00.0	
$T_r = \operatorname{adj} T_w^* (V_r / V_w)$	400.6	seconds
Step 1.8: Bird occupancy of rotor-swept volume (Tr)		
Rotor-swept bvolume: $V_r = N^* \pi^* R^{2*}(d+L)$	672,363.1	m ³
BH length (L)	0.36	m
Rotor blade width <i>(d)</i>	4.3	m
Rotor radius (R)	81	m
Π	3.14159	
Number of turbines (N)	7	
Step 1.7: Volume swept by windfarm rotors (V _r)		
Actual risk volume: $V_w = A^*h$	242,024,873	m ³
Height of rotors (h)	180	m
Actual WP indfarm area (A) ³	1,344,583	m ²

² The total number of daytime minutes during the period (based on Civil Twilight).

³ Area of WP as defined by the outermost rotors (<u>excluding</u> the 500m buffer).

⁴Assumes bird length=0.36m, wingspan 1.05m, flight speed= 11.2m/sec

APPENDIX 03

Wind Farm 2 (South) CRM Calculations

Whooper Swan 2018-19

	Viewsheds					
	1	2a	3	4		
STAGE 1: Estimation of rotor transits						
Step 1.1: Seconds occupancy of the survey risk volume $(T_w)^1$ recorded within each viewshed (T_wV)	0	114	430	0		
Step 1.2: Unweighted occupancy rate each viewshed (T _w Vrate)						
Minutes survey effort (<i>e</i>)	2,160	2,160	1,620	1,980		
Windfarm area (ha) visible within viewshed (<i>v</i>)	489.4	371.1	415.0	154.2		
$T_w V$ rate= $T_w V/e/v$	0.00E+00	1.42E-04	6.39E-04	0.00E+00		
Step 1.3: Weighted occupancy rate (weighted T _w V rate) ¹						
Effort in hectare-minutes (ve)	1,057,050	801,608	672,298	305,225		
Weight: proportion of total effort made at the VP	0.373	0.283	0.237	0.108		
Weighted T _w V rate (<i>T_wV</i> rate * weight)	0.00E+00	4.01E-05	1.51E-04	0.00E+00		
Total weighted occupancy rate (<i>z</i>)				0.000192	birds pe	r metre per ha/minute
Step 1.4: Total occupancy of risk volume during surveys (T _w)						
Potentially active minutes: non-breeding season (a) ²				116,909		
Total area of windfarm (survey WP, in ha) ¹		1,036.6				
Tw=z*a*WP				23,214	seconds	3

Step 1.5: T _w adjusted from survey PCH band to actual		
PCH (adjT ^w * (not entered))	23,214	seconds
Step 1.6: Flight risk volume (Vw)	· · · · · · · · · · · · · · · · · · ·	
Actual WP indfarm area		
(A) ³	4,790,107	m²
Height of rotors <i>(h)</i>	180	m
Actual risk volume: V _w =A*h	862,219,334	m ³
Step 1.7: Volume swept by windfarm rotors (V _r)		
Number of turbines <i>(N)</i>	13	
Π	3.14159	
Rotor radius (R)	81	m
Rotor blade width (d)	4.3	m
WS length (L)	1.52	m
Rotor-swept bvolume: <i>V_r=N*π*R</i> ^{2*} (<i>d</i> + <i>L</i>)	1,559,503.1	m ³
Step 1.8: Bird occupancy of rotor-swept volume (Tr)		
$T_r = \operatorname{adj} T_w^* (V_r / V_w)$	42.0	seconds
Step 1.9: Time taken to transit rotor <i>(t)</i>		
Flight speed (s)	17.3	m/sec
$t_r = (d+L)/s$	0.34	sec
Step 1.10: Number of rotor transits (N)		
$N=T_r/t$	125	rotor transits
STAGE 2: Probability of Collision for a bird flying through rotors (<i>p</i> (collision))		
from SNH spreadsheet ⁴ STAGE 3: Predicted mortality (birds per year)	0.088	

Step 3.1: With no avoidance, turbines operational 95% of the	40.40	
time N*p(collision)*0.95	10.43	collisions
Step 3.2: Adjusted using a		
range of avoidance rates:		
		(approx. one collision every 19-20
99.50%	0.052	yrs)

² The total number of daytime minutes during the period (based on Civil Twilight).

³ Area of WP as defined by the outermost rotors (<u>excluding</u> the 500m buffer).

⁴Assumes bird length=1.52m, wingspan 2.3m, flight speed= 17.3m/sec

Whooper Swan 2019-20

	Viewsheds						
	1	2a	3	4			
STAGE 1: Estimation of rotor transits							
Step 1.1: Seconds occupancy of the survey risk volume $(T_w)^1$ recorded within each viewshed (T_wV)	67	990	223	207			
Step 1.2: Unweighted occupancy rate each viewshed (T _w Vrate)							
Minutes survey effort (<i>e</i>)	2,340	2,340	2,520	2,340			
Windfarm area (ha) visible within viewshed (<i>v</i>)	489.4	371.1	415.0	154.2			
T_wV rate= $T_wV/e/v$	5.87E-05	1.14E-03	2.13E-04	5.74E-04			
Step 1.3: Weighted occupancy rate (weighted T _w V rate) ¹							
Effort in hectare-minutes (ve)	1,145,138	868,409	1,045,797	360,720			
Weight: proportion of total effort made at the VP	0.335	0.254	0.306	0.105			
Weighted T _w V rate (<i>T_wV</i> rate * weight)	1.96E-05	2.89E-04	6.51E-05	6.05E-05			
Total weighted occupancy rate (<i>z</i>)				0.000435	bir	ds p	er metre per ha/minute
Step 1.4: Total occupancy of risk volume during surveys (T _w)							
Potentially active minutes: non- breeding season (a) ²				158,602			
Total area of windfarm (survey WP, in ha) ¹				1,036.6			
Tw=z*a*WP				71,470	sec	<u>con</u> d	ls

Step 1.5: T _w adjusted from survey		
PCH band to actual PCH (adjT ^w *		
(not entered))	71,470	seconds
Step 1.6: Flight risk volume (V _w)		
Actual WP indfarm area (A) ³	4,790,107	m ²
Height of rotors (h)	180	m
Actual risk volume: <i>V_w=A*h</i>	862,219,334	m ³
Step 1.7: Volume swept by windfarm rotors (V _r)		
Number of turbines (N)	13	
π	3.14159	
Rotor radius (R)	81	m
Rotor blade width <i>(d)</i>	4.3	m
WS length (L)	1.52	m
Rotor-swept bvolume: <i>V_r=N*π*R</i> ² *(<i>d</i> + <i>L</i>)	1,559,503.1	m ³
Step 1.8: Bird occupancy of rotor- swept volume (Tr)		
$T_r = \operatorname{adj} T_w^*(V_r/V_w)$	129.3	seconds
Step 1.9: Time taken to transit rotor (t)		
Flight speed <i>(s)</i>	17.3	m/sec
$t_r=(d+L)/s$	0.34	sec
Step 1.10: Number of rotor transits (N)		
$N=T_{r}/t$	384	rotor transits
STAGE 2: Probability of Collision for a bird flying through rotors (p(collision)) from SNH		
spreadhseet ⁴	0.088	
STAGE 3: Predicted mortality (birds per year)		

Step 3.1: With no avoidance,turbines operational 95% of thetimeN*p(collision)*0.95	32.12	collisions
Step 3.2: Adjusted using a range of		
avoidance rates:		
		(approx. one collision every 6
99.50%	0.161	yrs)

² The total number of daytime minutes during the period (based on Civil Twilight).

³ Area of WP as defined by the outermost rotors (<u>excluding</u> the 500m buffer).

⁴Assumes bird length=1.52m, wingspan 2.3m, flight speed= 17.3m/sec

Whooper Swan 2020-21

	Viewshe						
	1	2a	3	4			
STAGE 1: Estimation of rotor transits							
Step 1.1: Seconds occupancy of the survey risk volume $(T_w)^1$ recorded within each viewshed (T_wV)	0	357	1,428	0			
Step 1.2: Unweighted occupancy rate each viewshed (T _w Vrate)							
Minutes survey effort (<i>e</i>)	2,160	2,160	2,160	2,160			
Windfarm area (ha) visible within viewshed (<i>v</i>)	489.4	371.1	415.0	154.2			
$T_w V$ rate= $T_w V/e/v$	0.00E+00	4.45E-04	1.59E-03	0.00E+00			
Step 1.3: Weighted occupancy rate (weighted T _w V rate) ¹							
Effort in hectare-minutes (ve)	1,057,050	801,608	896,398	332,973			
Weight: proportion of total effort made at the VP	0.342	0.260	0.290	0.108			
Weighted T_wV rate (T_wV rate * weight)	0.00E+00	1.16E-04	4.63E-04	0.00E+00			
Total weighted occupancy rate (<i>z</i>)				0.000578	birds per	metre per ha/minute	
Step 1.4: Total occupancy of risk volume during surveys (T _w)							
Potentially active minutes: non-breeding season (a) ²				156,692			
Total area of windfarm (survey WP, in ha) ¹				1,036.6			
Tw=z*a*WP				93,909	seconds		

Step 1.5: T _w adjusted from survey PCH band to actual PCH (adjT ^w * (not entered))	93,909	seconds
Step 1.6: Flight risk volume (V _w)		
Actual WP indfarm area (A) ³	4,790,107	m ²
Height of rotors (h)	180	m
Actual risk volume: $V_w = A^*h$	862,219,334	m ³
Step 1.7: Volume swept by windfarm rotors (V _r)		
Number of turbines (N)	13	
π	3.14159	
Rotor radius (R)	81	m
Rotor blade width (d)	4.3	m
WS length (L)	1.52	m
Rotor-swept bvolume: V _r =N*π*R ^{2*} (d+L)	1,559,503.1	m ³
Step 1.8: Bird occupancy of rotor- swept volume (Tr)		
$T_r = \operatorname{adj} T_w^* (V_r / V_w)$	169.9	seconds
Step 1.9: Time taken to transit rotor (<i>t</i>)		
Flight speed <i>(s)</i>	17.3	m/sec
$t_r=(d+L)/s$	0.34	sec
Step 1.10: Number of rotor transits (N)		
$N=T_r/t$	505	rotor transits
STAGE 2: Probability of Collision for a bird flying through rotors (<i>p</i> (collision)) from SNH spreadhseet ⁴	0.088	
STAGE 3: Predicted mortality (birds per year)		

Step 3.1: With no avoidance,turbines operational 95% of thetimeN*p(collision)*0.95	42.21	collisions
Step 3.2: Adjusted using a range		
of avoidance rates:		
		(approx. one collision every 4-5
99.50%	0.211	yrs)

² The total number of daytime minutes during the period (based on Civil Twilight).

³ Area of WP as defined by the outermost rotors (<u>excluding</u> the 500m buffer).

⁴Assumes bird length=1.52m, wingspan 2.3m, flight speed= 17.3m/sec

Eurasian Wigeon 2018-19

	Viewsheds					
	1	2a	3	4		
STAGE 1: Estimation of rotor transits						
Step 1.1: Seconds occupancy of the survey risk volume $(T_w)^1$ recorded within each viewshed (T_wV)	0	0	1,041	0		
Step 1.2: Unweighted occupancy rate each viewshed (T _w Vrate)						
Minutes survey effort (<i>e</i>)	2,160	2,160	1,620	1,980		
Windfarm area (ha) visible within viewshed (<i>v</i>)	489.4	371.1	415.0	154.2		
$T_w V$ rate= $T_w V/e/v$	0.00E+00	0.00E+00	1.55E-03	0.00E+00		
Step 1.3: Weighted occupancy rate (weighted T _w V rate) ¹						
Effort in hectare-minutes (ve)	1,057,050	801,608	672,284	305,225		
Weight: proportion of total effort made at the VP	0.373	0.283	0.237	0.108		
Weighted T _w V rate (<i>T_wV</i> rate * weight)	0.00E+00	0.00E+00	3.67E-04	0.00E+00		
Total weighted occupancy rate (<i>z</i>)				0.000367	birds per r	netre per ha/minute
Step 1.4: Total occupancy of risk volume during surveys (T _w)						
Potentially active minutes: non-breeding season (a) ²				129,231		
Total area of windfarm (survey WP, in ha) ¹				1,036.6		
Tw=z*a*WP				49,170	seconds	

Step 1.5: T _w adjusted from survey PCH band to actual PCH (adjT ^{w *} (not entered))	49,170	seconds
Step 1.6: Flight risk volume (V _w)		
Actual WP indfarm area (A) ³	4,790,107	m ²
Height of rotors (h)	180	m
Actual risk volume: $V_w = A^*h$	862,219,334	m ³
Step 1.7: Volume swept by windfarm rotors (V _r)		
Number of turbines (N)	13	
π	3.14159	
Rotor radius (R)	81	m
Rotor blade width (d)	4.3	m
L. length (L)	0.48	m
Rotor-swept bvolume: V _r =N*π*R ² *(d+L)	1,280,829.0	m ³
Step 1.8: Bird occupancy of rotor-swept volume (Tr)		
$T_r = \operatorname{adj} T_w^* (V_r / V_w)$	73.0	seconds
Step 1.9: Time taken to transit rotor (<i>t</i>)		
Flight speed <i>(s)</i>	10.3	m/sec
$t_r=(d+L)/s$	0.46	sec
Step 1.10: Number of rotor transits (N)		
$N=T_r/t$	157	rotor transits
STAGE 2: Probability of Collision for a bird flying through rotors (p (collision)) from SNH spreadhseet ⁴	0.061	
STAGE 3: Predicted mortality (birds per year)		

Step 3.1: With no avoidance,turbines operational 95% of thetimeN*p(collision)*0.95	9.12	collisions
Step 3.2: Adjusted using a range		
of avoidance rates:		
		(approx one collisions every 5-6
98%	0.182	yrs)

² The total number of daytime minutes during the period (based on Civil Twilight).

³ Area of WP as defined by the outermost rotors (<u>excluding</u> the 500m buffer).

⁴Assumes bird length=0.48m, wingspan 0.8m, flight speed= 10.3m/sec

Eurasian Wigeon 2020-21

	Viewsheds							
	1	2a	3	4				
STAGE 1: Estimation of rotor transits								
Step 1.1: Seconds occupancy of the survey risk volume $(T_w)^1$ recorded within each viewshed (T_wV)	0	0	13,296	0				
Step 1.2: Unweighted occupancy rate each viewshed (T _w Vrate)								
Minutes survey effort (<i>e</i>)	2,520	2,520	2,520	2,520				
Windfarm area (ha) visible within viewshed (<i>v</i>)	489.4	371.1	415.0	154.2				
$T_w V$ rate= $T_w V/e/v$	0.00E+00	0.00E+00	1.27E-02	0.00E+00				
Step 1.3: Weighted occupancy rate (weighted T _w V rate) ¹								
Effort in hectare-minutes (ve)	1,233,225	935,210	1,045,775	388,468				
Weight: proportion of total effort made at the VP	0.342	0.260	0.290	0.108				
Weighted T_wV rate (T_wV rate * weight)	0.00E+00	0.00E+00	3.69E-03	0.00E+00				
Total weighted occupancy rate (z)				0.003691		rds p a/min	per metre per nute	
Step 1.4: Total occupancy of risk volume during surveys (T _w)								
Potentially active minutes: non- breeding season (a) ²				141,821				
Total area of windfarm (survey WP, in ha) ¹				1,036.6				
Tw=z*a*WP				542,559	se	econo	ds	
Step 1.5: T _w adjusted from survey PCH band to actual PCH (adjT ^w * (not entered))				542,559	se	econo	ds	

Step 1.6: Flight risk volume (V _w)		
Actual WP indfarm area $(A)^3$	4,790,107	m ²
Height of rotors (<i>h</i>)	180	
Actual risk volume: $V_w = A^*h$	862,219,334	
Step 1.7: Volume swept by windfarm rotors (Vr)	002,210,004	
Number of turbines <i>(N)</i>	13	
Π	3.14159	
Rotor radius (R)	81	m
Rotor blade width <i>(d)</i>	4.3	m
L. length (L)	0.48	m
Rotor-swept bvolume: <i>V_r=N*π*R</i> ^{2*} (<i>d</i> + <i>L</i>)	1,280,829.0	m ³
Step 1.8: Bird occupancy of rotor-swept volume (Tr)		
$T_r = \operatorname{adj} T_w^* (V_r / V_w)$	806.0	seconds
Step 1.9: Time taken to transit rotor <i>(t)</i>		
Flight speed (s)	10.3	m/sec
$t_r = (d+L)/s$	0.46	sec
Step 1.10: Number of rotor transits (N)		
$N=T_r/t$	1,737	rotor transits
STAGE 2: Probability of Collision for a bird flying through rotors (p(collision))		
from SNH spreadhseet ⁴	0.061	
STAGE 3: Predicted mortality (birds per year)		
Step 3.1: With no avoidance, turbines		
operational 95% of the time N*p(collision)*0.95	100.64	collisions
Step 3.2: Adjusted using a range of avoidance rates:		

	1	
		(approx 2 collisions per
000/	0.010	(opp
98%	2.013	yr)

² The total number of daytime minutes during the period (based on Civil Twilight).

³ Area of WP as defined by the outermost rotors (<u>excluding</u> the 500m buffer). ⁴Assumes bird length=0.48m, wingspan 0.8m, flight speed= 10.3m/sec

Common Kestrel 2021

	Viewsheds				
	1	2a	3	4	
STAGE 1: Estimation of rotor transits					
Step 1.1: Seconds occupancy of the survey risk volume (T _w) ¹ recorded within each viewshed (T _w V)	780	334	0	18	
Step 1.2: Unweighted occupancy rate each viewshed (T _w Vrate)					
Minutes survey effort (e)	2,160	1,980	1,800	1,800	
Windfarm area (ha) visible within viewshed (<i>v</i>)	489.4	371.1	415.0	154.2	
T_wV rate= $T_wV/e/v$	7.38E-04	4.55E-04	0.00E+00	6.60E-05	
Step 1.3: Weighted occupancy rate (weighted T _w V rate) ¹					
Effort in hectare-minutes (ve)	1,057,050	734,808	746,982	277,477	
Weight: proportion of total effort made at the VP	0.375	0.261	0.265	0.099	
Weighted T_wV rate (T_wV rate * weight)	2.77E-04	1.19E-04	0.00E+00	6.50E-06	
Total weighted occupancy rate (<i>z</i>)				0.000402	birds per metre per ha/minute
Step 1.4: Total occupancy of risk volume during surveys (T _w)					
Potentially active minutes: breeding season (a) ²				166,422	
Total area of windfarm (survey WP, in ha) ¹				1,036.6	
Tw=z*a*WP				69,359	seconds

Step 1.5: T _w adjusted from		
survey PCH band to actual		
PCH (adjT ^w * (not entered))	69,359	seconds
Step 1.6: Flight risk volume (V _w)		
Actual WP indfarm area (A) ³	4,790,107	m ²
Height of rotors (h)	180	m
Actual risk volume: $V_w = A^*h$	862,219,334	m ³
Step 1.7: Volume swept by windfarm rotors (V _r)	· · ·	
Number of turbines (N)	13	
Π	3.14159	
Rotor radius (R)	81	m
Rotor blade width <i>(d)</i>	4.3	m
K. length (L)	0.34	m
Rotor-swept bvolume: <i>V_r=N*π*R</i> ^{2*} (<i>d</i> + <i>L</i>)	1,243,315.2	m ³
Step 1.8: Bird occupancy of rotor-swept volume (Tr)		
$T_r = \operatorname{adj} T_w^* (V_r / V_w)$	100.0	seconds
Step 1.9: Time taken to transit rotor (<i>t</i>)		
Flight speed (s)	12.7	m/sec
$t_r=(d+L)/s$	0.37	sec
Step 1.10: Number of rotor transits (N)		
$N=T_{f}/t$	274	rotor transits
STAGE 2: Probability of Collision for a bird flying through rotors (<i>p</i> (collision)) from SNH spreadhseet ⁴	0.049	
STAGE 3: Predicted mortality (birds per year)		

Step 3.1: With no avoidance,		
turbines operational 95% of the time N*p(collision)*0.95	12.74	collisions
Step 3.2: Adjusted using a range of avoidance rates:		
		(approx. one collision every 1-2
95%	0.637	years)

² The total number of daytime minutes during the period (based on Civil Twilight).

³ Area of WP as defined by the outermost rotors (<u>excluding</u> the 500m buffer).

⁴Assumes bird length=0.36m, wingspan 1.05m, flight speed= 11.2m/sec

Peregrine Falcon 2018-19

	Viewsheds						
	1	2a	3	4			
STAGE 1: Estimation of rotor transits							
Step 1.1: Seconds occupancy of the survey risk volume $(T_w)^1$ recorded within each viewshed (T_wV)	70	15	6	0			
Step 1.2: Unweighted occupancy rate each viewshed (T _w Vrate)							
Minutes survey effort (e)	1,800	1,980	1,260	1,800			
Windfarm area (ha) visible within viewshed (v)	489.4	371.1	415.0	154.2			
T_wV rate= $T_wV/e/v$	7.99E-05	1.97E-05	1.15E-05	0.00E+00			
Step 1.3: Weighted occupancy rate (weighted T _w V rate) ¹							
Effort in hectare-minutes (ve)	880,875	734,808	522,887	277,477			
Weight: proportion of total effort made at the VP	0.365	0.304	0.216	0.115			
Weighted T _w V rate (<i>T_wV</i> rate * weight)	2.91E-05	6.00E-06	2.48E-06	0.00E+00			
Total weighted occupancy rate (z)				0.000038	birds	per n	netre per ha/minute
Step 1.4: Total occupancy of risk volume during surveys (T _w)							
Potentially active minutes: non- breeding season (a) ²				92,661			
Total area of windfarm (survey WP, in ha) ¹				1,036.6			
Tw=z*a*WP				3,614	secon	ds	

Step 1.5: T _w adjusted from survey		
PCH band to actual PCH (adjT ^w *		
(not entered))	3,614	seconds
Step 1.6: Flight risk volume (V _w)		
Actual WP indfarm area (A) ³	4,790,107	m ²
Height of rotors (h)	180	m
Actual risk volume: $V_w = A^*h$	862,219,334	m ³
Step 1.7: Volume swept by windfarm rotors (V _r)		
Number of turbines <i>(N)</i>	13	
Π	3.14159	
Rotor radius (<i>R</i>)	81	m
Rotor blade width (d)	4.3	m
PE length (L)	0.45	m
Rotor-swept bvolume: <i>V_r=N*π*R</i> ^{2*} (<i>d</i> + <i>L</i>)	1,272,790.3	m ³
Step 1.8: Bird occupancy of rotor- swept volume (Tr)		
$T_r = \operatorname{adj} T_w^* (V_r / V_w)$	5.3	seconds
Step 1.9: Time taken to transit rotor (t)		
Flight speed <i>(s)</i>	14	m/sec
t _r =(d+L)/s	0.34	sec
Step 1.10: Number of rotor transits (N)		
$N=T_r/t$	16	rotor transits
STAGE 2: Probability of Collision for a bird flying through rotors (p(collision)) from SNH		
spreadsheet ⁴	0.053	
STAGE 3: Predicted mortality (birds per year)		

Step 3.1: With no avoidance,turbines operational 95% of thetimeN*p(collision)*0.95	0.79	collisions
Step 3.2: Adjusted using a range of avoidance rates:		
		(approx one collision every 62
98%	0.016	

² The total number of daytime minutes during the period (based on Civil Twilight).

³ Area of WP as defined by the outermost rotors (<u>excluding</u> the 500m buffer).

⁴Assumes bird length=0.45m, wingspan 1.1m, flight speed= 14.0m/sec

Peregrine Falcon 2020-21

	Viewsheds						
	1	2a	3	4			
STAGE 1: Estimation of rotor transits							
Step 1.1: Seconds occupancy of the survey risk volume $(T_w)^1$ recorded within each viewshed (T_wV)	165	0	0	23			
Step 1.2: Unweighted occupancy rate each viewshed (T _w Vrate)							
Minutes survey effort (e)	2,520	2,520	2,340	2,160			
Windfarm area (ha) visible within viewshed (<i>v</i>)	489.4	371.1	415.0	154.2			
T_wV rate= $T_wV/e/v$	1.34E-04	0.00E+00	0.00E+00	6.84E-05			
Step 1.3: Weighted occupancy rate (weighted T _w V rate) ¹							
Effort in hectare-minutes (ve)	1,233,225	935,210	971,077	332,973			
Weight: proportion of total effort made at the VP	0.355	0.269	0.280	0.096			
Weighted T _w V rate (<i>T_wV</i> rate * weight)	4.75E-05	0.00E+00	0.00E+00	6.56E-06			
Total weighted occupancy rate (z)				0.000054	birds	per n	netre per ha/minute
Step 1.4: Total occupancy of risk volume during surveys (T _w)							
Potentially active minutes: non- breeding season (a) ²				147,318			
Total area of windfarm (survey WP, in ha) ¹				1,036.6			
Tw=z*a*WP				8,258	secon	ds	

Step 1.5: T _w adjusted from survey PCH band to actual PCH (adjT ^w *		
(not entered))	8,258	seconds
Step 1.6: Flight risk volume (V _w)		
Actual WP indfarm area (A) ³	4,790,107	m ²
Height of rotors <i>(h)</i>	180	m
Actual risk volume: <i>V_w=A*h</i>	862,219,334	m ³
Step 1.7: Volume swept by windfarm rotors (V _r)		
Number of turbines (N)	13	
π	3.14159	
Rotor radius <i>(R)</i>	81	m
Rotor blade width (d)	4.3	m
PE length (L)	0.45	m
Rotor-swept bvolume: V _r =N*π*R²*(d+L)	1,272,790.3	m ³
Step 1.8: Bird occupancy of rotor- swept volume (Tr)		
$T_r = \operatorname{adj} T_w^* (V_r / V_w)$	12.2	seconds
Step 1.9: Time taken to transit rotor <i>(t)</i>		
Flight speed <i>(s)</i>	14	m/sec
$t_r=(d+L)/s$	0.34	sec
Step 1.10: Number of rotor transits (N)		
$N=T_r/t$	36	rotor transits
STAGE 2: Probability of Collision for a bird flying through rotors (<i>p</i> (collision)) from SNH		
spreadsheet ⁴	0.053	
STAGE 3: Predicted mortality (birds per year)		

Step 3.1: With no avoidance, turbines operational 95% of the		
time N*p(collision)*0.95	1.81	collisions
Step 3.2: Adjusted using a range		
of avoidance rates:		
		(approx one collision every 28
98%	0.036	yrs)

² The total number of daytime minutes during the period (based on Civil Twilight).

³ Area of WP as defined by the outermost rotors (<u>excluding</u> the 500m buffer). ⁴Assumes bird length=0.45m, wingspan 1.1m, flight speed= 14.0m/sec

Eurasian Golden Plover 2018-19

	Viewsheds						
	1	2a	3	4			
STAGE 1: Estimation of rotor transits							
Step 1.1: Seconds occupancy of the survey risk volume $(T_w)^1$ recorded within each viewshed (T_wV)	0	0	108	0			
Step 1.2: Unweighted occupancy rate each viewshed (T _w Vrate)							
Minutes survey effort (e)	2,160	2,160	1,620	1,980			
Windfarm area (ha) visible within viewshed (<i>v</i>)	489.4	371.1	415.0	154.2			
T_wV rate= $T_wV/e/v$	0.00E+00	0.00E+00	1.61E-04	0.00E+00			
Step 1.3: Weighted occupancy rate (weighted T _w V rate) ¹							
Effort in hectare-minutes (ve)	1,057,050	801,608	672,298	305,225			
Weight: proportion of total effort made at the VP	0.373	0.283	0.237	0.108			
Weighted T_wV rate (T_wV rate * weight)	0.00E+00	0.00E+00	3.81E-05	0.00E+00			
Total weighted occupancy rate (z)				0.000038	birds p	er me	etre per ha/minute
Step 1.4: Total occupancy of risk volume during surveys (T _w)							
Potentially active minutes: non-breeding season (a) ²				116,909			
Total area of windfarm (survey WP, in ha) ¹				1,036.6			
Tw=z*a*WP				4,615	second	ds	

Step 1.5: T _w adjusted from		
survey PCH band to actual PCH (adjT ^w * (not entered))	4 615	seconds
Step 1.6: Flight risk volume (V _w)	1,010	
Actual WP indfarm area		
(A) ³	4,790,107	m ²
Height of rotors (h)	180	m
Actual risk volume: <i>V_w=A*h</i>	862,219,334	m ³
Step 1.7: Volume swept by windfarm rotors (V _r)		
Number of turbines (N)	13	
π	3.14159	
Rotor radius (R)	81	m
Rotor blade width <i>(d)</i>	4.3	m
GP length (L)	0.28	m
Rotor-swept bvolume: $V_r = N^* \pi^* R^{2*} (d+L)$	1,227,237.8	m ³
Step 1.8: Bird occupancy of rotor-swept volume (Tr)		
$T_r = \operatorname{adj} T_w^* (V_r / V w)$	6.6	seconds
Step 1.9: Time taken to transit rotor (<i>t</i>)		
Flight speed (s)	17.5	m/sec
$t_r=(d+L)/s$	0.26	sec
Step 1.10: Number of rotor transits (N)		
$N=T_{r}/t$	25	rotor transits
STAGE 2: Probability of Collision for a bird flying through rotors (<i>p</i> (collision)) from SNH spreadhseet ⁴	0.043	
STAGE 3: Predicted mortality (birds per year)	0.043	

Step 3.1: With no avoidance, turbines operational 95% of the time N*p(collision)*0.95	1.03	collisions
Step 3.2: Adjusted using a range of avoidance rates:		
98%	0.021	(approx one collision every 47-48 yrs)

² The total number of daytime minutes during the period (based on Civil Twilight).

³ Area of WP as defined by the outermost rotors (<u>excluding</u> the 500m buffer).

⁴Assumes bird length=0.28m, wingspan 0.72m, flight speed= 17.5m/sec

Eurasian Golden Plover 2019-20

						Viewsheds
	1	2a	3	4		
STAGE 1: Estimation of rotor transits						
Step 1.1: Seconds occupancy of the survey risk volume (T _w) ¹ recorded within each viewshed (T _w V)	0	441	1,553	0		
Step 1.2: Unweighted occupancy rate each viewshed (T _w Vrate)						
Minutes survey effort (<i>e</i>)	2,700	2,700	2,880	2,700		
Windfarm area (ha) visible within viewshed (<i>v</i>)	489.4	371.1	415.0	154.2		
$T_w V$ rate= $T_w V/e/v$	0.00E+00	4.40E-04	1.30E-03	0.00E+00		
Step 1.3: Weighted occupancy rate (weighted T _w V rate) ¹						
Effort in hectare-minutes (ve)	1,321,313	1,002,011	1,195,197	416,216		
Weight: proportion of total effort made at the VP	0.336	0.255	0.304	0.106		
Weighted T_wV rate (T_wV rate * weight)	0.00E+00	1.12E-04	3.95E-04	0.00E+00		
Total weighted occupancy rate (z)				0.000507	birds per	metre per ha/minute
Step 1.4: Total occupancy of risk volume during surveys (T _w)						
Potentially active minutes: non-breeding season (a) ²				172,630		
Total area of windfarm (survey WP, in ha) ¹				1,036.6		
Tw=z*a*WP				90,669	seconds	

Step 1.5: T _w adjusted from survey PCH band to actual PCH (adjT ^w * (not entered))	90.669	seconds
Step 1.6: Flight risk volume (V _w)	,	
Actual WP indfarm area (A) ³	4,790,107	m ²
Height of rotors (h)	180	m
Actual risk volume: $V_w = A^*h$	862,219,334	m ³
Step 1.7: Volume swept by windfarm rotors (V _r)		
Number of turbines (N)	13	
π	3.14159	
Rotor radius (R)	81	m
Rotor blade width (d)	4.3	m
GP length (L)	0.28	m
Rotor-swept bvolume: <i>V_r=N*π*R</i> ^{2*} (d+L)	1,227,237.8	m ³
Step 1.8: Bird occupancy of rotor- swept volume (Tr)		
$T_r = \operatorname{adj} T_w^* (V_r / V w)$	129.1	seconds
Step 1.9: Time taken to transit rotor <i>(t)</i>		
Flight speed <i>(s)</i>	17.5	m/sec
t _r =(d+L)/s	0.26	sec
Step 1.10: Number of rotor transits (N)		
$N=T_r/t$	493	rotor transits
STAGE 2: Probability of Collision for a bird flying through rotors (<i>p</i> (collision)) from SNH spreadhseet ⁴	0.043	
STAGE 3: Predicted mortality (birds per year)	0.043	

Step 3.1: With no avoidance,turbines operational 95% of thetimeN*p(collision)*0.95	20.14	collisions
Step 3.2: Adjusted using a range		
of avoidance rates:		
		(approx one collision every 2-3
98%	0.403	

² The total number of daytime minutes during the period (based on Civil Twilight).

³ Area of WP as defined by the outermost rotors (<u>excluding</u> the 500m buffer).

⁴Assumes bird length=0.28m, wingspan 0.72m, flight speed= 17.5m/sec

Eurasian Golden Plover 2020-21

	Viewsheds					
	1	2a	3	4		
STAGE 1: Estimation of rotor transits						
Step 1.1: Seconds occupancy of the survey risk volume $(T_w)^1$ recorded within each viewshed (T_wV)	0	0	13,895	8		
Step 1.2: Unweighted occupancy rate each viewshed (T _w Vrate)						
Minutes survey effort (<i>e</i>)	2,880	2,880	2,700	2,520		
Windfarm area (ha) visible within viewshed (<i>v</i>)	489.4	371.1	415.0	154.2		
T_wV rate= $T_wV/e/v$	0.00E+00	0.00E+00	1.24E-02	1.98E-05		
Step 1.3: Weighted occupancy rate (weighted T _w V rate) ¹						
Effort in hectare-minutes (ve)	1,409,400	1,068,811	1,120,497	388,468		
Weight: proportion of total effort made at the VP	0.353	0.268	0.281	0.097		
Weighted T_wV rate (T_wV rate * weight)	0.00E+00	0.00E+00	3.48E-03	1.92E-06		
Total weighted occupancy rate (<i>z</i>)				0.003487	birds per	r metre per ha/minute
Step 1.4: Total occupancy of risk volume during surveys (T _w)						
Potentially active minutes: non-breeding season (a) ²	171,618					
Total area of windfarm (survey WP, in ha) ¹				1,036.6		
Tw=z*a*WP				620,269	seconds	

Step 1.5: T _w adjusted from survey PCH band to actual PCH		
(adjT ^w * (not entered))	620,269	seconds
Step 1.6: Flight risk volume (V _w)		
Actual WP indfarm area (A) ³	4,790,107	m ²
Height of rotors <i>(h)</i>	180	m
Actual risk volume: <i>V_w=A*h</i>	862,219,334	m ³
Step 1.7: Volume swept by windfarm rotors (V _r)		
Number of turbines <i>(N)</i>	13	
Π	3.14159	
Rotor radius (R)	81	m
Rotor blade width <i>(d)</i>	4.3	m
GP length (L)	0.28	m
Rotor-swept bvolume: V _r =N*π*R ^{2*} (d+L)	1,227,237.8	m ³
Step 1.8: Bird occupancy of rotor- swept volume (Tr)		
$T_r = \operatorname{adj} T_w^* (V_r / V_w)$	882.9	seconds
Step 1.9: Time taken to transit rotor <i>(t)</i>		
Flight speed <i>(s)</i>	17.5	m/sec
$t_r = (d+L)/s$	0.26	sec
Step 1.10: Number of rotor transits (N)		
$N=T_r/t$	3,373	rotor transits
STAGE 2: Probability of Collision for a bird flying through rotors (<i>p</i> (collision)) from SNH		
spreadhseet ⁴ STAGE 3: Predicted mortality (birds per year)	0.043	

Step 3.1: With no avoidance,turbines operational 95% of thetimeN*p(collision)*0.95	137.80	collisions
Step 3.2: Adjusted using a range		
of avoidance rates:		
		(approx three collisions every
98%	2.756	year)

² The total number of daytime minutes during the period (based on Civil Twilight).

³ Area of WP as defined by the outermost rotors (<u>excluding</u> the 500m buffer).

Northern Lapwing 2018-19

	Viewsheds						
	1	2a	3	4			
STAGE 1: Estimation of rotor transits							
Step 1.1: Seconds occupancy of the survey risk volume $(T_w)^1$ recorded within each viewshed (T_wV)	1,588	339	1,826	0			
Step 1.2: Unweighted occupancy rate each viewshed (T _w Vrate)							
Minutes survey effort (<i>e</i>)	1,800	1,980	1,260	1,800			
Windfarm area (ha) visible within viewshed (<i>v</i>)	489.4	371.1	415.0	154.2			
T_wV rate= $T_wV/e/v$	1.80E-03	4.62E-04	3.49E-03	0.00E+00			
Step 1.3: Weighted occupancy rate (weighted T _w V rate) ¹							
Effort in hectare-minutes (ve)	880,875	734,808	522,887	277,477			
Weight: proportion of total effort made at the VP	0.365	0.304	0.216	0.115			
Weighted T _w V rate (<i>T_wV</i> rate * weight)	6.57E-04	1.40E-04	7.56E-04	0.00E+00			
Total weighted occupancy rate (z)				0.001553	birds	per m	netre per ha/minute
Step 1.4: Total occupancy of risk volume during surveys (T _w)							
Potentially active minutes: non- breeding season (a) ²				92,661			
Total area of windfarm (survey WP, in ha) ¹				1,036.6			
Tw=z*a*WP				149,203	secor	nds	

Step 1.5: T _w adjusted from survey PCH band to actual PCH (adjT ^w * (not entered))	140 203	seconds
	149,203	36001103
Step 1.6: Flight risk volume (V _w)		
Actual WP indfarm area (A) ³	4,790,107	m ²
Height of rotors (h)	180	m
Actual risk volume: V _w =A*h	862,219,334	m ³
Step 1.7: Volume swept by windfarm rotors (V _r)		
Number of turbines <i>(N)</i>	13	
Π	3.14159	
Rotor radius <i>(R)</i>	81	m
Rotor blade width <i>(d)</i>	4.3	m
L. length (L)	0.3	m
Rotor-swept bvolume: $V_r=N^*\pi^*R^{2*}(d+L)$	1,232,597.0	m ³
Step 1.8: Bird occupancy of rotor- swept volume (Tr)		
$T_r = \operatorname{adj} T_w^* (V_r / V_w)$	213.3	seconds
Step 1.9: Time taken to transit rotor (<i>t</i>)		
Flight speed (s)	12.3	m/sec
$t_r = (d+L)/s$	0.37	sec
Step 1.10: Number of rotor transits (N)		
$N=T_{r}/t$	570	rotor transits
STAGE 2: Probability of Collision for		
a bird flying through rotors (p(collision)) from SNH spreadhseet⁴	0.048	
STAGE 3: Predicted mortality (birds	0.040	
per year)		
Step 3.1: With no avoidance,		
turbines operational 95% of the time		
N*p(collision)*0.95	26.01	collisions

Step 3.2: Adjusted using a range of avoidance rates:		
98%	0.520	(approx one collision every 2 vrs)
		J = 1

² The total number of daytime minutes during the period (based on Civil Twilight).

³ Area of WP as defined by the outermost rotors (<u>excluding</u> the 500m buffer).

Northern Lapwing 2019-20

	Viewsheds					
	1	2a	3	4		
STAGE 1: Estimation of rotor transits						
Step 1.1: Seconds occupancy of the survey risk volume $(T_w)^1$ recorded within each viewshed (T_wV)	0	0	4,118	0		
Step 1.2: Unweighted occupancy rate each viewshed (T _w Vrate)						
Minutes survey effort (<i>e</i>)	2,340	2,700	2,880	2,700		
Windfarm area (ha) visible within viewshed (<i>v</i>)	489.4	371.1	415.0	154.2		
T_wV rate= $T_wV/e/v$	0.00E+00	0.00E+00	3.45E-03	0.00E+00		
Step 1.3: Weighted occupancy rate (weighted T _w V rate) ¹						
Effort in hectare-minutes (ve)	1,145,138	1,002,011	1,195,171	416,216		
Weight: proportion of total effort made at the VP	0.305	0.267	0.318	0.111		
Weighted T_wV rate (T_wV rate * weight)	0.00E+00	0.00E+00	1.10E-03	0.00E+00		
Total weighted occupancy rate (<i>z</i>)				0.001096	birds pe	r metre per ha/minute
Step 1.4: Total occupancy of risk volume during surveys (T _w)						
Potentially active minutes: non-breeding season (a) ²				148,282		
Total area of windfarm (survey WP, in ha) ¹				1,036.6		
Tw=z*a*WP				168,393	seconds	3

Step 1.5: T _w adjusted from survey PCH band to actual PCH (adjT ^w * (not entered))	168,393	seconds
Step 1.6: Flight risk volume (V _w)		
Actual WP indfarm area (A) ³	4,790,107	m ²
Height of rotors <i>(h)</i>	180	m
Actual risk volume: $V_w = A^*h$	862,219,334	m ³
Step 1.7: Volume swept by windfarm rotors (V _r)		
Number of turbines (N)	13	
π	3.14159	
Rotor radius (<i>R</i>)	81	m
Rotor blade width <i>(d)</i>	4.3	m
L. length (L)	0.3	m
Rotor-swept bvolume: V _r =N*π*R ² *(d+L)	1,232,597.0	m ³
Step 1.8: Bird occupancy of rotor- swept volume (Tr)		
$T_r = \operatorname{adj} T_w^* (V_r / V_w)$	240.7	seconds
Step 1.9: Time taken to transit rotor <i>(t)</i>		
Flight speed <i>(s)</i>	12.3	m/sec
$t_r=(d+L)/s$	0.37	sec
Step 1.10: Number of rotor transits (N)		
$N=T_r/t$	644	rotor transits
STAGE 2: Probability of Collision for a bird flying through rotors (<i>p</i> (collision)) from SNH spreadhseet ⁴	0.048	
STAGE 3: Predicted mortality (birds per year)		

Step 3.1: With no avoidance,turbines operational 95% of thetimeN*p(collision)*0.95	29.35	collisions
Step 3.2: Adjusted using a range of avoidance rates:		
of avoluative fales.		
		(approx one collision every 1-2
98%	0.587	yrs)

² The total number of daytime minutes during the period (based on Civil Twilight).

³ Area of WP as defined by the outermost rotors (<u>excluding</u> the 500m buffer).

Northern Lapwing 2020

	Viewsheds						
	1	2a	3	4			
STAGE 1: Estimation of rotor transits							
Step 1.1: Seconds occupancy of the survey risk volume $(T_w)^1$ recorded within each viewshed (T_wV)	0	0	442	0			
Step 1.2: Unweighted occupancy rate each viewshed (T _w Vrate)							
Minutes survey effort (<i>e</i>)	1,800	1,800	1,440	1,620			
Windfarm area (ha) visible within viewshed (<i>v</i>)	489.4	371.1	415.0	154.2			
$T_w V$ rate= $T_w V/e/v$	0.00E+00	0.00E+00	7.39E-04	0.00E+00			
Step 1.3: Weighted occupancy rate (weighted T _w V rate) ¹							
Effort in hectare-minutes (ve)	880,875	668,007	597,586	249,729			
Weight: proportion of total effort made at the VP	0.368	0.279	0.249	0.104			
Weighted T _w V rate (<i>T_wV</i> rate * weight)	0.00E+00	0.00E+00	1.84E-04	0.00E+00			
Total weighted occupancy rate (z)				0.000184	birds	per n	netre per ha/minute
Step 1.4: Total occupancy of risk volume during surveys (T _w)							
Potentially active minutes: breeding season (a) ²				151,538			
Total area of windfarm (survey WP, in ha) ¹				1,036.6			
Tw=z*a*WP				28,949	secor	nds	

Step 1.5: T _w adjusted from survey PCH band to actual PCH (adjT ^w *		
(not entered))	28,949	seconds
Step 1.6: Flight risk volume (V _w)		
Actual WP indfarm area (A) ³	4,790,107	m ²
Height of rotors (h)	180	m
Actual risk volume: V _w =A*h	862,219,334	m ³
Step 1.7: Volume swept by windfarm rotors (V _r)		
Number of turbines (N)	13	
Π	3.14159	
Rotor radius (R)	81	m
Rotor blade width (d)	4.3	m
L. length (L)	0.3	m
Rotor-swept bvolume: <i>V_r=N*π*R</i> ^{2*} (<i>d</i> + <i>L</i>)	1,232,597.0	m ³
Step 1.8: Bird occupancy of rotor- swept volume (Tr)		
$T_r = \operatorname{adj} T_w^* (V_r / V_w)$	41.4	seconds
Step 1.9: Time taken to transit rotor (t)		
Flight speed (s)	12.3	m/sec
$t_r=(d+L)/s$	0.37	sec
Step 1.10: Number of rotor transits (N)		
$N=T_r/t$	111	rotor transits
STAGE 2: Probability of Collision for a bird flying through rotors (p(collision)) from SNH		
spreadhseet ⁴	0.048	
STAGE 3: Predicted mortality (birds per year)		

Step 3.1: With no avoidance,turbines operational 95% of thetimeN*p(collision)*0.95	5.05	collisions
Step 3.2: Adjusted using a range of avoidance rates:		
		(approx one collision every 10
98%	0.101	yrs)

² The total number of daytime minutes during the period (based on Civil Twilight).

³ Area of WP as defined by the outermost rotors (<u>excluding</u> the 500m buffer).

Northern Lapwing 2020-21

	Viewsheds						
	1	2a	3	4			
STAGE 1: Estimation of rotor transits							
Step 1.1: Seconds occupancy of the survey risk volume (T _w) ¹ recorded within each viewshed (T _w V)	0	0	24,240	60			
Step 1.2: Unweighted occupancy rate each viewshed (T _w Vrate)							
Minutes survey effort (<i>e</i>)	2,520	2,520	2,340	2,160			
Windfarm area (ha) visible within viewshed (v)	489.4	371.1	415.0	154.2			
$T_w V$ rate= $T_w V/e/v$	0.00E+00	0.00E+00	2.50E-02	1.81E-04			
Step 1.3: Weighted occupancy rate (weighted T _w V rate) ¹							
Effort in hectare-minutes (ve)	1,233,225	935,210	971,077	332,973			
Weight: proportion of total effort made at the VP	0.355	0.269	0.280	0.096			
Weighted T_wV rate (T_wV rate * weight)	0.00E+00	0.00E+00	6.98E-03	1.74E-05			
Total weighted occupancy rate (<i>z</i>)				0.006998	bird	s per	metre per ha/minute
Step 1.4: Total occupancy of risk volume during surveys (T _w)							
Potentially active minutes: non- breeding season (a) ²				147,318			
Total area of windfarm (survey WP, in ha) ¹				1,036.6			
Tw=z*a*WP		1,068,659 seconds					
Step 1.5: T _w adjusted from survey PCH band to actual PCH (adjT ^w * (not entered))				1,068,659	seco	onds	

Step 1.6: Flight risk volume (V _w)		
Actual WP indfarm area (A) ³	4,790,107	m ²
Height of rotors (h)	180	m
Actual risk volume: $V_w = A^*h$	862,219,334	m ³
Step 1.7: Volume swept by windfarm rotors (V _r)		
Number of turbines (N)	13	
Π	3.14159	
Rotor radius (<i>R</i>)	81	m
Rotor blade width (d)	4.3	m
L. length (L)	0.3	m
Rotor-swept bvolume: <i>V_r=N*π*R</i> ^{2*} (<i>d</i> + <i>L</i>)	1,232,597.0	m ³
Step 1.8: Bird occupancy of rotor-swept volume (Tr)		
$T_r = \operatorname{adj} T_w^* (V_r / V w)$	1527.7	seconds
Step 1.9: Time taken to transit rotor <i>(t)</i>		
Flight speed (s)	12.3	m/sec
$t_r = (d+L)/s$	0.37	sec
Step 1.10: Number of rotor transits (N)		
$N=T_r/t$	4,085	rotor transits
STAGE 2: Probability of Collision for a		
bird flying through rotors (<i>p</i> (collision)) from SNH spreadhseet ⁴	0.048	
STAGE 3: Predicted mortality (birds per	0.040	
year)		
Step 3.1: With no avoidance, turbines		
operational 95% of the time N*p(collision)*0.95	186.28	collisions
Step 3.2: Adjusted using a range of avoidance rates:	100.20	

		(approx four collisions per
98%	3.726	yr)

² The total number of daytime minutes during the period (based on Civil Twilight).

³ Area of WP as defined by the outermost rotors (<u>excluding</u> the 500m buffer).

Northern Lapwing 2021

	Viewsheds					
	1	2a	3	4		
STAGE 1: Estimation of rotor transits						
Step 1.1: Seconds occupancy of the survey risk volume $(T_w)^1$ recorded within each viewshed (T_wV)	0	0	7,596	0		
Step 1.2: Unweighted occupancy rate each viewshed (T _w Vrate)						
Minutes survey effort (<i>e</i>)	2,160	1,800	1,800	1,800		
Windfarm area (ha) visible within viewshed (<i>v</i>)	489.4	371.1	415.0	154.2		
T_wV rate= $T_wV/e/v$	0.00E+00	0.00E+00	1.02E-02	0.00E+00		
Step 1.3: Weighted occupancy rate (weighted T _w V rate) ¹						
Effort in hectare-minutes (ve)	1,057,050	668,007	746,982	277,477		
Weight: proportion of total effort made at the VP	0.384	0.243	0.272	0.101		
Weighted T_wV rate (T_wV rate * weight)	0.00E+00	0.00E+00	2.76E-03	0.00E+00		
Total weighted occupancy rate (<i>z</i>)				0.002763	birds per	metre per ha/minute
Step 1.4: Total occupancy of risk volume during surveys (T _w)						
Potentially active minutes: breeding season (a) ²				151,456		
Total area of windfarm (survey WP, in ha) ¹				1,036.6		
Tw=z*a*WP				433,737	seconds	

Step 1.5: T _w adjusted from survey PCH band to actual PCH		
(adjT ^w * (not entered))	433.737	seconds
Step 1.6: Flight risk volume	· · · ·	
(V _w)		
Actual WP indfarm area	4 700 407	2
(A) ³	4,790,107	m ²
Height of rotors (h)	180	m
Actual risk volume: V _w =A*h	862,219,334	m ³
Step 1.7: Volume swept by windfarm rotors (V _r)		
	10	
Number of turbines <i>(N)</i>	13	
Π	3.14159	
Rotor radius <i>(R)</i>	81	m
Rotor blade width <i>(d)</i>	4.3	m
L. length (L)	0.3	m
Rotor-swept bvolume: <i>V_r=N*π*R</i> ^{2*} (<i>d</i> + <i>L</i>)	1,232,597.0	m ³
Step 1.8: Bird occupancy of rotor-swept volume (Tr)		
$T_r = \operatorname{adj} T_w^* (V_r / V w)$	620.1	seconds
Step 1.9: Time taken to transit rotor (t)		
Flight speed <i>(s)</i>	12.3	m/sec
$t_r=(d+L)/s$	0.37	Sec
Step 1.10: Number of rotor transits (N)		
N=T _r /t	1.658	rotor transits
STAGE 2: Probability of	.,	
Collision for a bird flying		
through rotors (<i>p</i> (collision))	0.040	
from SNH spreadhseet ⁴ STAGE 3: Predicted mortality	0.048	
(birds per year)		

Step 3.1: With no avoidance,turbines operational 95% of thetimeN*p(collision)*0.95	75.60	collisions
Step 3.2: Adjusted using a range of avoidance rates:		
98%	1.512	(approx one collision every 8 months)

² The total number of daytime minutes during the period (based on Civil Twilight).

³ Area of WP as defined by the outermost rotors (<u>excluding</u> the 500m buffer).

Eurasian Curlew 2018-19

	Viewsheds						
	1	2a	3	4			
STAGE 1: Estimation of rotor transits							
Step 1.1: Seconds occupancy of the survey risk volume $(T_w)^1$ recorded within each viewshed (T_wV)	0	0	5,656	405			
Step 1.2: Unweighted occupancy rate each viewshed (T _w Vrate)							
Minutes survey effort (e)	2,160	2,160	1,620	1,980			
Windfarm area (ha) visible within viewshed (<i>v</i>)	489.4	371.1	415.0	154.2			
T_wV rate= $T_wV/e/v$	0.00E+00	0.00E+00	8.41E-03	1.33E-03			
Step 1.3: Weighted occupancy rate (weighted T _w V rate) ¹							
Effort in hectare-minutes (ve)	1,057,050	801,608	672,284	305,225			
Weight: proportion of total effort made at the VP	0.373	0.283	0.237	0.108			
Weighted T_wV rate (T_wV rate * weight)	0.00E+00	0.00E+00	1.99E-03	1.43E-04			
Total weighted occupancy rate (z)				0.002137	birc	ds p	er metre per ha/minute
Step 1.4: Total occupancy of risk volume during surveys (T _w)							
Potentially active minutes: non- breeding season (a) ²				116,909			
Total area of windfarm (survey WP, in ha) ¹				1,036.6			
Tw=z*a*WP				258,983	sec	ond	ls
Step 1.5: T _w adjusted from survey PCH band to actual PCH (adjT ^w * (not entered))				258,983	sec	ond	ls

Step 1.6: Flight risk volume (V _w)		
Actual WP indfarm area (A) ³	4,790,107	m ²
Height of rotors (h)	180	m
Actual risk volume: <i>V_w=A*h</i>	862,219,334	m ³
Step 1.7: Volume swept by windfarm rotors (V _r)		
Number of turbines (N)	13	
Π	3.14159	
Rotor radius (R)	81	m
Rotor blade width <i>(d)</i>	4.3	m
L. length (L)	0.55	m
Rotor-swept bvolume: <i>V_r=N*π*R</i> ^{2*} (<i>d</i> + <i>L</i>)	1,299,585.9	m ³
Step 1.8: Bird occupancy of rotor- swept volume (Tr)		
$T_r = \operatorname{adj} T_w^* (V_r / V w)$	390.4	seconds
Step 1.9: Time taken to transit rotor <i>(t)</i>		
Flight speed (s)	13.2	m/sec
$t_r=(d+L)/s$	0.37	sec
Step 1.10: Number of rotor transits (N)		
$N=T_r/t$	1,062	rotor transits
STAGE 2: Probability of Collision for a		
bird flying through rotors (<i>p</i> (collision)) from SNH spreadhseet ⁴	0.058	
STAGE 3: Predicted mortality (birds per year)		
Step 3.1: With no avoidance, turbines		
operational 95% of the time		collisions
N*p(collision)*0.95 Step 3.2: Adjusted using a range of avoidance rates:	58.54	CONISIONS

		(approx 1.2 collision every
98%	1.171	yr)

² The total number of daytime minutes during the period (based on Civil Twilight).

³ Area of WP as defined by the outermost rotors (<u>excluding</u> the 500m buffer).

Black-headed Gull 2020

Viewsheds

			-				Viewsneds
	1	2a	3	4			
STAGE 1: Estimation of rotor transits							
Step 1.1: Seconds occupancy of the survey risk volume $(T_w)^1$ recorded within each viewshed (T_wV)	0	25	544	8			
Step 1.2: Unweighted occupancy rate each viewshed (T _w Vrate)							
Minutes survey effort (<i>e</i>)	1,800	1,800	1,440	1,620			
Windfarm area (ha) visible within viewshed (<i>v</i>)	489.4	371.1	415.0	154.2			
$T_w V$ rate= $T_w V/e/v$	0.00E+00	3.77E-05	9.11E-04	3.36E-05			
Step 1.3: Weighted occupancy rate (weighted T _w V rate) ¹							
Effort in hectare-minutes (ve)	880,875	668,007	597,586	249,729			
Weight: proportion of total effort made at the VP	0.368	0.279	0.249	0.104			
Weighted T_wV rate (T_wV rate * weight)	0.00E+00	1.05E-05	2.27E-04	3.51E-06			
Total weighted occupancy rate (z)				0.000241	birds	per n	netre per ha/minute
Step 1.4: Total occupancy of risk volume during surveys (T _w)							
Potentially active minutes: breeding season (a) ²				157,005			
Total area of windfarm (survey WP, in ha) ¹				1,036.6			
Tw=z*a*WP				39,245	secor	nds	

Step 1.5: T _w adjusted from survey		
PCH band to actual PCH (adjT ^w *	20.245	
(not entered))	39,245	seconds
Step 1.6: Flight risk volume (V _w)		
Actual WP indfarm area (A) ³	4,790,107	<u>m²</u>
Height of rotors (h)	180	m
Actual risk volume: <i>V_w=A*h</i>	862,219,334	m ³
Step 1.7: Volume swept by windfarm rotors (V _r)		
Number of turbines (N)	13	
Π	3.14159	
Rotor radius (R)	81	m
Rotor blade width <i>(d)</i>	4.3	m
L. length (L)	0.36	m
Rotor-swept bvolume: <i>V_r=N*π*R</i> ² *(<i>d</i> + <i>L</i>)	1,248,674.3	m ³
Step 1.8: Bird occupancy of rotor- swept volume (Tr)		
$T_r = \operatorname{adj} T_w^*(V_r/Vw)$	56.8	seconds
Step 1.9: Time taken to transit rotor (t)		
Flight speed (s)	11.2	m/sec
$t_r=(d+L)/s$	0.42	sec
Step 1.10: Number of rotor transits (N)		
$N=T_{r}/t$	137	rotor transits
STAGE 2: Probability of Collision for a bird flying through rotors (p(collision)) from SNH	0.050	
spreadhseet ⁴ STAGE 3: Predicted mortality (birds per year)	0.053	

Step 3.1: With no avoidance,turbines operational 95% of thetimeN*p(collision)*0.95	6.88	collisions
Step 3.2: Adjusted using a range of avoidance rates:		
		(approx one collision every 7-8
98%	0.138	yr)

² The total number of daytime minutes during the period (based on Civil Twilight).

³ Area of WP as defined by the outermost rotors (<u>excluding</u> the 500m buffer).

Black-headed Gull 2021

	Viewsheds						
	1	2a	3	4			
STAGE 1: Estimation of rotor transits							
Step 1.1: Seconds occupancy of the survey risk volume $(T_w)^1$ recorded within each viewshed (T_wV)	8	0	1,215	159			
Step 1.2: Unweighted occupancy rate each viewshed (T _w Vrate)							
Minutes survey effort (<i>e</i>)	2,160	1,800	1,800	1,800			
Windfarm area (ha) visible within viewshed (<i>v</i>)	489.4	371.1	415.0	154.2			
T_wV rate= $T_wV/e/v$	7.57E-06	0.00E+00	1.63E-03	5.73E-04			
Step 1.3: Weighted occupancy rate (weighted T _w V rate) ¹							
Effort in hectare-minutes (ve)	1,057,050	668,007	746,982	277,477			
Weight: proportion of total effort made at the VP	0.384	0.243	0.272	0.101			
Weighted T_wV rate (T_wV rate * weight)	2.91E-06	0.00E+00	4.42E-04	5.78E-05			
Total weighted occupancy rate (<i>z</i>)				0.000503	bird	s per	metre per ha/minute
Step 1.4: Total occupancy of risk volume during surveys (T _w)							
Potentially active minutes: breeding season (a) ²				156,993			
Total area of windfarm (survey WP, in ha) ¹				1,036.6			
Tw=z*a*WP				81,798	sec	onds	
Step 1.5: T _w adjusted from survey PCH band to actual PCH (adjT ^w * (not entered))				81,798	sec	onds	

Stop 4.6: Elight rick volume (V_{i})		
Step 1.6: Flight risk volume (Vw) Actual WP indfarm area (A) ³	4,790,107	m ²
	· · ·	
Height of rotors (h)	180	m
Actual risk volume: V _w =A*h	862,219,334	m ³
Step 1.7: Volume swept by windfarm rotors (V _r)		
Number of turbines (N)	13	
π	3.14159	
Rotor radius <i>(R)</i>	81	m
Rotor blade width (d)	4.3	m
BH length (L)	0.36	m
Rotor-swept bvolume: $V_r = N^* \pi^* R^{2*} (d+L)$	1,248,674.3	m ³
Step 1.8: Bird occupancy of rotor- swept volume (Tr)		
$T_r = \operatorname{adj} T_w^* (V_r / V w)$	118.5	seconds
Step 1.9: Time taken to transit rotor (t)		
Flight speed <i>(s)</i>	11.2	m/sec
$t_r=(d+L)/s$	0.42	sec
Step 1.10: Number of rotor transits (N)		
$N=T_{r'}/t$	285	rotor transits
STAGE 2: Probability of Collision for a bird flying through rotors		
(<i>p</i> (collision)) from SNH spreadhseet ⁴	0.053	
STAGE 3: Predicted mortality (birds per year)		
Step 3.1: With no avoidance, turbines operational 95% of the time		
N*p(collision)*0.95	14.34	collisions
Step 3.2: Adjusted using a range of avoidance rates:		

	(арр	orox one collision every 5
98%	0.287 yr)	
1 The survey risk volume was derived from the windfarm polygon including a processionary 500m huffer around the turbing		

² The total number of daytime minutes during the period (based on Civil Twilight).

³ Area of WP as defined by the outermost rotors (<u>excluding</u> the 500m buffer).

EUROPEAN OFFICES

United Kingdom

AYLESBURY T: +44 (0)1844 337380

BELFAST belfast@slrconsulting.com

BRADFORD-ON-AVON T: +44 (0)1225 309400

BRISTOL T: +44 (0)117 906 4280

CARDIFF T: +44 (0)29 2049 1010

CHELMSFORD T: +44 (0)1245 392170

EDINBURGH T: +44 (0)131 335 6830

EXETER T: + 44 (0)1392 490152

GLASGOW glasgow@slrconsulting.com

GUILDFORD guildford@slrconsulting.com LONDON T: +44 (0)203 805 6418

MAIDSTONE T: +44 (0)1622 609242

MANCHESTER (Denton) T: +44 (0)161 549 8410

MANCHESTER (Media City) T: +44 (0)161 872 7564

NEWCASTLE UPON TYNE T: +44 (0)191 261 1966

NOTTINGHAM T: +44 (0)115 964 7280

SHEFFIELD T: +44 (0)114 245 5153

SHREWSBURY T: +44 (0)1743 23 9250

STIRLING T: +44 (0)1786 239900

WORCESTER T: +44 (0)1905 751310

Ireland

France

DUBLIN T: + 353 (0)1 296 4667

GRENOBLE T: +33 (0)6 23 37 14 14

